Robust truss optimization using the sequential parametric convex approximation method

We study the design of robust truss structures under mechanical equilibrium, displacements and stress constraints. Our main objective is to minimize the total amount of material, for the purpose of finding the most economic structure. A robust design is found by considering load perturbations. The nature of the constraints makes the mathematical program nonconvex. In … Read more

Convex Relaxations for Gas Expansion Planning

Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, … Read more

Polyhedral studies of vertex coloring problems: The standard formulation

Despite the fact that many vertex coloring problems are polynomially solvable on certain graph classes, most of these problems are not “under control” from a polyhedral point of view. The equivalence between optimization and separation suggests the existence of integer programming formulations for these problems whose associated polytopes admit elegant characterizations. In this work we … Read more

New multi-commodity flow formulations for the pooling problem

The pooling problem is a nonconvex nonlinear programming problem with numerous applications. The nonlinearities of the problem arise from bilinear constraints that capture the blending of raw materials. Bilinear constraints are well-studied and significant progress has been made in solving large instances of the pooling problem to global optimality. This is due in no small … Read more

Generic properties for semialgebraic programs

In this paper we study genericity for the following parameterized class of nonlinear programs: \begin{eqnarray*} \textrm{minimize } f_u(x) := f(x) – \langle u, x \rangle \quad \textrm{subject to } \quad x \in S, \end{eqnarray*} where $f \colon \mathbb{R}^n \rightarrow \mathbb{R}$ is a polynomial function and $S \subset \mathbb{R}^n$ is a closed semialgebraic set, which is … Read more

Stability and genericity for semi-algebraic compact programs

In this paper we consider the class of polynomial optimization problems with inequality and equality constraints, in which every problem of the class is obtained by perturbations of the objective function, while the constraint functions are kept fixed. Under certain assumptions, we establish some stability properties (e.g., strong H\”older stability with explicitly determined exponents, semicontinuity, … Read more

A Binarisation Heuristic for Non-Convex Quadratic Programming with Box Constraints

Non-convex quadratic programming with box constraints is a fundamental problem in the global optimization literature, being one of the simplest NP-hard nonlinear programs. We present a new heuristic for this problem, which enables one to obtain solutions of excellent quality in reasonable computing times. The heuristic consists of four phases: binarisation, convexification, branch-and-bound, and local … Read more

On the convergence rate of an inexact proximal point algorithm for quasiconvex minimization on Hadamard manifolds

In this paper we present a rate of convergence analysis of an inexact proximal point algorithm to solve minimization problems for quasiconvex objective functions on Hadamard manifolds. We prove that under natural assumptions the sequence generated by the algorithm converges linearly or superlinearly to a critical point of the problem. Article Download View On the … Read more

A mean-risk MINLP for transportation network protection

This paper focuses on transportation network protection to hedge against extreme events such as earthquakes. Traditional two-stage stochastic programming has been widely adopted to obtain solutions under a risk-neutral preference through the use of expectations in the recourse function. In reality, decision makers hold different risk preferences. We develop a mean-risk two-stage stochastic programming model … Read more

Relaxations and discretizations for the pooling problem

The pooling problem is a folklore NP-hard global optimization problem that finds applications in industries such as petrochemical refining, wastewater treatment, and mining. This paper assimilates the vast literature on this problem that is dispersed over different areas and gives unifying arguments and new insights on prevalent techniques. We also present new ideas for computing … Read more