Quantifying Double McCormick

When using the standard McCormick inequalities twice to convexify trilinear monomials, as is often the practice in modeling and software, there is a choice of which variables to group first. For the important case in which the domain is a nonnegative box, we calculate the volume of the resulting relaxation, as a function of the … Read more

Diffusion Methods for Classification with Pairwise Relationships

We define two algorithms for propagating information in classification problems with pairwise relationships. The algorithms involve contraction maps and are related to non-linear diffusion and random walks on graphs. The approach is also related to message passing and mean field methods. The algorithms we describe are guaranteed to converge on graphs with arbitrary topology. Moreover … Read more

Spectral projected gradient method for stochastic optimization

We consider the Spectral Projected Gradient method for solving constrained optimization problems with the objective function in the form of mathematical expectation. It is assumed that the feasible set is convex, closed and easy to project on. The objective function is approximated by a sequence of Sample Average Approximation functions with different sample sizes. The … Read more

Cutting Box Strategy: an algorithmic framework for improving metaheuristics for continuous global optimization

In this work, we present a new framework to increase effectiveness of metaheuristics in seeking good solutions for the general nonlinear optimization problem, called Cutting Box Strategy (CBS). CBS is based on progressive reduction of the search space through the use of intelligent multi-starts, where solutions already obtained cannot be revisited by the adopted metaheuristic. … Read more

Discrete flow pooling problems in coal supply chains

The pooling problem is a nonconvex nonlinear programming problem (NLP) with applications in the refining and petrochemical industries, but also the coal mining industry. The problem can be stated as follows: given a set of raw material suppliers (inputs) and qualities of the supplies, find a cost-minimising way of blending these raw materials in intermediate … Read more

A special case of the generalized pooling problem arising in the mining industry

Iron ore and coal are substantial contributors to Australia’s export economy. Both are blended products that are made-to-order according to customers’ desired product qualities. Mining companies have a great interest in meeting these target qualities since deviations generally result in contractually agreed penalties. This paper studies a variation of the generalized pooling problem (GPP) arising … Read more

Vanishing Price of Anarchy in Large Coordinative Nonconvex Optimization

We focus on a class of nonconvex cooperative optimization problems that involve multiple participants. We study the duality framework and provide geometric and analytic character- izations of the duality gap. The dual problem is related to a market setting in which each participant pursuits self interests at a given price of common goods. The duality … Read more

Bound-constrained polynomial optimization using only elementary calculations

We provide a monotone non increasing sequence of upper bounds $f^H_k$ ($k\ge 1$) converging to the global minimum of a polynomial $f$ on simple sets like the unit hypercube. The novelty with respect to the converging sequence of upper bounds in [J.B. Lasserre, A new look at nonnegativity on closed sets and polynomial optimization, SIAM … Read more

Robust truss optimization using the sequential parametric convex approximation method

We study the design of robust truss structures under mechanical equilibrium, displacements and stress constraints. Our main objective is to minimize the total amount of material, for the purpose of finding the most economic structure. A robust design is found by considering load perturbations. The nature of the constraints makes the mathematical program nonconvex. In … Read more

Convex Relaxations for Gas Expansion Planning

Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, … Read more