Max-min optimizations on the rank and inertia of a linear Hermitian matrix expression subject to range, rank and definiteness restrictions

The inertia of a Hermitian matrix is defined to be a triplet composed by the numbers of the positive, negative and zero eigenvalues of the matrix counted with multiplicities, respectively. In this paper, we give various closed-form formulas for the maximal and minimal values for the rank and inertia of the Hermitian expression $A + … Read more

Exploiting Second-Order Cone Structure for Global Optimization

Identifying and exploiting classes of nonconvex constraints whose feasible region is convex after branching can reduce the time to compute global solutions for nonlinear optimization problems. We develop techniques for identifying quadratic and nonlinear constraints whose feasible region can be represented as the union of a finite number of second-order cones, and we provide necessary … Read more

Fairer Benchmarking of Optimization Algorithms via Derivative Free Optimization

Research in optimization algorithm design is often accompanied by benchmarking a new al- gorithm. Some benchmarking is done as a proof-of-concept, by demonstrating the new algorithm works on a small number of dicult test problems. Alternately, some benchmarking is done in order to demonstrate that the new algorithm in someway out-performs previous methods. In this … Read more

Inclusion Certificates and Simultaneous Convexification of Functions

We define the inclusion certificate as a measure that expresses each point in the domain of a collection of functions as a convex combination of other points in the domain. Using inclusion certificates, we extend the convex extensions theory to enable simultaneous convexification of functions. We discuss conditions under which the domain of the functions … Read more

A polynomial case of cardinality constrained quadratic optimization problem

We investigate in this paper a fixed parameter polynomial algorithm for the cardinality constrained quadratic optimization problem, which is NP-hard in general. More specifically, we prove that, given a problem of size $n$, the number of decision variables, and $s$, the cardinality, if, for some $0

Some Results on the Strength of Relaxations of Multilinear Functions

We study approaches for obtaining convex relaxations of global optimization problems containing multilinear functions. Specifically, we compare the concave and convex envelopes of these functions with the relaxations that are obtained with a standard relaxation approach, due to McCormick. The standard approach reformulates the problem to contain only bilinear terms and then relaxes each term … Read more

On convex relaxations for quadratically constrained quadratic programming

We consider convex relaxations for the problem of minimizing a (possibly nonconvex) quadratic objective subject to linear and (possibly nonconvex) quadratic constraints. Let F denote the feasible region for the linear constraints. We first show that replacing the quadratic objective and constraint functions with their convex lower envelopes on F is dominated by an alternative … Read more

Calibrating Artificial Neural Networks by Global Optimization

An artificial neural network (ANN) is a computational model – implemented as a computer program – that is aimed at emulating the key features and operations of biological neural networks. ANNs are extensively used to model unknown or unspecified functional relationships between the input and output of a “black box” system. In order to apply … Read more

Development and Calibration of Currency Market Strategies by Global Optimization

We have developed a new financial indicator – called the Interest Rate Differential Adjusted for Volatility (IRDAV) measure – to assist investors in currency markets. On a monthly basis, we rank currency pairs according to this measure and generate a basket of pairs with the highest IRDAV values. Under positive market conditions, an IRDAV based … Read more

Euclidean Distance Matrix Completion Problems

A Euclidean distance matrix is one in which the $(i,j)$ entry specifies the squared distance between particle $i$ and particle $j$. Given a partially-specified symmetric matrix $A$ with zero diagonal, the Euclidean distance matrix completion problem (EDMCP) is to determine the unspecified entries to make $A$ a Euclidean distance matrix. We survey three different approaches … Read more