A well-posed shooting algorithm for optimal control problems with singular arcs

In this article we establish for the first time the well-posedness of the shooting algorithm applied to optimal control problems for which all control variables enter linearly in the Hamil- tonian. We start by investigating the case having only initial-final state constraints and free control variable, and afterwards we deal with control bounds. The shooting … Read more

Partially affine control problems: second order conditions and a well-posed shooting algorithm

This paper deals with optimal control problems for systems that are affine in one part of the control variables and nonlinear in the rest of the control variables. We have finitely many equality and inequality constraints on the initial and final states. First we obtain second order necessary and sufficient conditions for weak optimality. Afterwards, … Read more

A robust Kantorovich’s theorem on inexact Newton method with relative residual error tolerance

We prove that under semi-local assumptions, the inexact Newton method with a fixed relative residual error tolerance converges Q-linearly to a zero of the non-linear operator under consideration. Using this result we show that Newton method for minimizing a self-concordant function or to find a zero of an analytic function can be implemented with a … Read more

A (k+1)-Slope Theorem for the k-Dimensional Infinite Group Relaxation

We prove that any minimal valid function for the k-dimensional infinite group relaxation that is piecewise linear with at most k+1 slopes and does not factor through a linear map with non-trivial kernel is extreme. This generalizes a theorem of Gomory and Johnson for k=1, and Cornu\’ejols and Molinaro for k=2. ArticleDownload View PDF

Quadratic order conditions for bang-singular extremals

This paper deals with optimal control problems for systems affine in the control variable. We consider nonnegativity constraints on the control, and finitely many equality and inequality constraints on the final state. First, we obtain second order necessary optimality conditions. Secondly, we derive a second order sufficient condition for the scalar control case. CitationNUMERICAL ALGEBRA, … Read more

There is no variational characterization of the cycles in the method of periodic projections

The method of periodic projections consists in iterating projections onto $m$ closed convex subsets of a Hilbert space according to a periodic sweeping strategy. In the presence of $m\geq 3$ sets, a long-standing question going back to the 1960s is whether the limit cycles obtained by such a process can be characterized as the minimizers … Read more

Polynomial Approximations for Continuous Linear Programs

Continuous linear programs have attracted considerable interest due to their potential for modelling manufacturing, scheduling and routing problems. While efficient simplex-type algorithms have been developed for separated continuous linear programs, crude time discretization remains the method of choice for solving general (non-separated) problem instances. In this paper we propose a more generic approximation scheme for … Read more

Convexity Conditions of Kantorovich Function and Related Semi-infinite Linear Matrix Inequalities

The Kantorovich function $(x^TAx)( x^T A^{-1} x)$, where $A$ is a positive definite matrix, is not convex in general. From a matrix or convex analysis point of view, it is interesting to address the question: When is this function convex? In this paper, we prove that the 2-dimensional Kantorovich function is convex if and only … Read more

A Double Smoothing Technique for Constrained Convex Optimization Problems and Applications to Optimal Control

In this paper, we propose an efficient approach for solving a class of convex optimization problems in Hilbert spaces. Our feasible region is a (possibly infinite-dimensional) simple convex set, i.e. we assume that projections on this set are computationally easy to compute. The problem we consider is the minimization of a convex function over this … Read more

Multiobjective DC Programming with Infinite Convex Constraints

In this paper new results are established in multiobjective DC programming with infinite convex constraints ($MOPIC$ for abbr.) that are defined on Banach space (finite or infinite) with objectives given as the difference of convex functions subject to infinite convex constraints. This problem can also be called multiobjective DC semi-infinite and infinite programming, where decision … Read more