A Continuous Dynamical Newton-Like Approach to Solving Monotone Inclusions

We introduce non-autonomous continuous dynamical systems which are linked to Newton and Levenberg-Marquardt methods. They aim at solving inclusions governed by maximal monotone operators in Hilbert spaces. Relying on Minty representation of maximal monotone operators as lipschitzian manifolds, we show that these dynamics can be formulated as first-order in time differential systems, which are relevant … Read more

Quest for the control on the second order derivatives: topology optimization with functional includes the state’s curvature

Many physical phenomena, governed by partial differential equations (PDEs), are second order in nature. This makes sense to pose the control on the second order derivatives of the field solution, in addition to zero and first order ones, to consistently control the underlaying process. However, this type of control is nontrivial and to the best … Read more

Minimum weight Topology optimization subject to unsteady heat equation and space-time pointwise constraints — toward automatic optimal riser design in the shape casting process

The automatic optimal design of feeding system in the shape casting process is considered in the present work. In fact, the goal is to find the optimal position, size, shape and topology of risers in the shape casting process. This problem is formulated as a minimum weight topology optimization problem subjected to a nonlinear transient … Read more

New formulas for the Fenchel subdifferential of the conjugate function

Following [13] we provide new formulas for the Fenchel subdifferential of the conjugate of functions defined on locally convex spaces. In particular, this allows deriving expressions for the minimizers set of the lower semicontinuous convex hull of such functions. These formulas are written by means of primal objects related to the subdifferential of the initial … Read more

Solving Infinite-dimensional Optimization Problems by Polynomial Approximation

We solve a class of convex infinite-dimensional optimization problems using a numerical approximation method that does not rely on discretization. Instead, we restrict the decision variable to a sequence of finite-dimensional linear subspaces of the original infinite-dimensional space and solve the corresponding finite-dimensional problems in a efficient way using structured convex optimization techniques. We prove … Read more

Double smoothing technique for infinite-dimensional optimization problems with applications to Optimal Control.

In this paper, we propose an efficient technique for solving some infinite-dimensional problems over the sets of functions of time. In our problem, besides the convex point-wise constraints on state variables, we have convex coupling constraints with finite-dimensional image. Hence, we can formulate a finite-dimensional dual problem, which can be solved by efficient gradient methods. … Read more

Implicit Multifunction Theorems in complete metric spaces

In this paper, we establish some new characterizations of the metric regularity of implicit multifunctions in complete metric spaces by using the lower semicontinuous envelopes of the distance functions for set-valued mappings. Through these new characterizations it is possible to investigate implicit multifunction theorems based on coderivatives and on contingent derivatives as well as the … Read more

Nonsmooth Lyapunov pairs for infinite-dimensional first-order differential inclusions

The main objective of this paper is to provide new explicit criteria to characterize weak lower semi-continuous Lyapunov pairs or functions associated to first-order differential inclusions in Hilbert spaces. These inclusions are governed by a Lipschitzian perturbation of a maximally monotone operator. The dual criteria we give are expressed by the means of the proximal … Read more

Combinatorial Integral Approximation

We are interested in structures and efficient methods for mixed-integer nonlinear programs (MINLP) that arise from a first discretize, then optimize approach to time-dependent mixed-integer optimal control problems (MIOCPs). In this study we focus on combinatorial constraints, in particular on restrictions on the number of switches on a fixed time grid. We propose a novel … Read more