On Solving General Two-Stage Stochastic Programs

We study general two-stage stochastic programs and present conditions under which the second stage programs can be convexified. This allows us to relax the restrictions, such as integrality, binary, semi-continuity, and many others, on the second stage variables in certain situations. Next, we introduce two-stage stochastic disjunctive programs (TSS-DPs) and extend Balas’s linear programming equivalent … Read more

Combinatorial Optimal Control of Semilinear Elliptic PDEs

Optimal control problems (OCP) containing both integrality and partial differential equation (PDE) constraints are very challenging in practice. The most wide-spread solution approach is to first discretize the problem, it results in huge and typically nonconvex mixed-integer optimization problems that can be solved to proven optimality only in very small dimensions. In this paper, we … Read more

A Cutting Plane Method for Risk-constrained Traveling Salesman Problem with Random Arc Costs

This paper considers the risk-constrained stochastic traveling salesman problem with random arc costs. In the context of stochastic arc costs, the deterministic traveling salesman problem’s optimal solutions would be ineffective because the selected route might be exposed to a greater risk where the actual cost can exceed the resource limit in extreme scenarios. We present … Read more

A new lift-and-project operator

In this paper, we analyze the strength of split cuts in a lift-and-project framework. We first observe that the Lovasz-Schrijver and Sherali-Adams lift-and-project operator hierarchies can be viewed as applying specific 0-1 split cuts to an appropriate extended formulation and demonstrate how to strengthen these hierarchies using additional split cuts. More precisely, we define a … Read more

Adaptive Elective Surgery Planning Under Duration and Length-Of-Stay Uncertainty: A Robust Optimization Approach

Scheduling elective surgeries is a complicated task due to the coupled effect of multiple sources of uncertainty and the impact of the proposed schedule on the downstream units. In this paper, we propose an adaptive robust optimization model to address the existing uncertainty in surgery duration and length-of-stay in the surgical intensive care unit. The … Read more

Tight second-stage formulations in two-stage stochastic mixed integer programs

We study two-stage stochastic mixed integer programs (TSS-MIPs) with integer variables in the second stage. We show that under suitable conditions, the second stage MIPs can be convexified by adding parametric cuts a priori. As special cases, we extend the results of Miller and Wolsey (Math Program 98(1):73-88, 2003) to TSS-MIPs. Furthermore, we consider second … Read more

A new family of facet defining inequalities for the maximum edge-weighted clique problem

This paper considers a family of cutting planes, recently developed for mixed 0-1 polynomial programs and shows that they define facets for the maximum edge-weighted clique problem. There exists a polynomial time exact separation algorithm for these in- equalities. The result of this paper may contribute to the development of more efficient algorithms for the … Read more

Another pedagogy for pure-integer Gomory

We present pure-integer Gomory cuts in a way so that they are derived with respect to a “dual form” pure-integer optimization problem and applied on the standard-form primal side as columns, using the primal simplex algorithm. The input integer problem is not in standard form, and so the cuts are derived a bit differently. In … Read more

A cutting-plane approach for large-scale capacitated multi-period facility location using a specialized interior-point method

We propose a cutting-plane approach (namely, Benders decomposition) for a class of capacitated multi-period facility location problems. The novelty of this approach lies on the use of a specialized interior-point method for solving the Benders subproblems. The primal block-angular structure of the resulting linear optimization problems is exploited by the interior-point method, allowing the (either … Read more