Tight second-stage formulations in two-stage stochastic mixed integer programs

We study two-stage stochastic mixed integer programs (TSS-MIPs) with integer variables in the second stage. We show that under suitable conditions, the second stage MIPs can be convexified by adding parametric cuts a priori. As special cases, we extend the results of Miller and Wolsey (Math Program 98(1):73-88, 2003) to TSS-MIPs. Furthermore, we consider second … Read more

A new family of facet defining inequalities for the maximum edge-weighted clique problem

This paper considers a family of cutting planes, recently developed for mixed 0-1 polynomial programs and shows that they define facets for the maximum edge-weighted clique problem. There exists a polynomial time exact separation algorithm for these in- equalities. The result of this paper may contribute to the development of more efficient algorithms for the … Read more

Another pedagogy for pure-integer Gomory

We present pure-integer Gomory cuts in a way so that they are derived with respect to a “dual form” pure-integer optimization problem and applied on the standard-form primal side as columns, using the primal simplex algorithm. The input integer problem is not in standard form, and so the cuts are derived a bit differently. In … Read more

A cutting-plane approach for large-scale capacitated multi-period facility location using a specialized interior-point method

We propose a cutting-plane approach (namely, Benders decomposition) for a class of capacitated multi-period facility location problems. The novelty of this approach lies on the use of a specialized interior-point method for solving the Benders subproblems. The primal block-angular structure of the resulting linear optimization problems is exploited by the interior-point method, allowing the (either … Read more

A Polyhedral Study of the Integrated Minimum-Up/-Down Time and Ramping Polytope

In this paper, we consider the polyhedral structure of the integrated minimum-up/-down time and ramping polytope for the unit commitment problem. Our studied generalized polytope includes minimum-up/-down time constraints, generation ramp-up/-down rate constraints, logical constraints, and generation upper/lower bound constraints. We derive strong valid inequalities by utilizing the structures of the unit commitment problem, and … Read more

New computer-based search strategies for extreme functions of the Gomory–Johnson infinite group problem

We describe new computer-based search strategies for extreme functions for the Gomory–Johnson infinite group problem. They lead to the discovery of new extreme functions, whose existence settles several open questions. Article Download View New computer-based search strategies for extreme functions of the Gomory–Johnson infinite group problem

Cutting planes from extended LP formulations

Given a mixed-integer set defined by linear inequalities and integrality requirements on some of the variables, we consider extended formulations of its continuous (LP) relaxation and study the effect of adding cutting planes in the extended space. In terms of optimization, extended LP formulations do not lead to better bounds as their projection onto the … Read more

A polyhedral study of binary polynomial programs

We study the polyhedral convex hull of a mixed-integer set S defined by a collection of multilinear equations over the 0-1-cube. Such sets appear frequently in the factorable reformulation of mixed-integer nonlinear optimization problems. In particular, the set S represents the feasible region of a linearized unconstrained binary polynomial optimization problem. We define an equivalent … Read more

Maximizing a class of submodular utility functions with constraints

Motivated by stochastic 0-1 integer programming problems with an expected utility objective, we study the mixed-integer nonlinear set: $P = \cset{(w,x)\in \reals \times \set{0,1}^N}{w \leq f(a’x + d), b’x \leq B}$ where $N$ is a positive integer, $f:\reals \mapsto \reals$ is a concave function, $a, b \in \reals^N$ are nonnegative vectors, $d$ is a real … Read more

An electronic compendium of extreme functions for the Gomory–Johnson infinite group problem

In this note we announce the availability of an electronic compendium of extreme functions for Gomory–Johnson’s infinite group problem. These functions serve as the strongest cut-generating functions for integer linear optimization problems. We also close several gaps in the literature. Article Download View An electronic compendium of extreme functions for the Gomory–Johnson infinite group problem