A Branch-and-Cut Algorithm for the Stochastic Uncapacitated Lot-Sizing Problem

This paper addresses a multi-stage stochastic integer programming formulation of the uncapacitated lot-sizing problem under uncertainty. We show that the classical (l,S) inequalities for the deterministic lot-sizing polytope are also valid for the stochastic lot-sizing polytope. We then extend the (l,S) inequalities to a general class of valid inequalities, called the (Q,S_Q) inequalities, and we … Read more

Valid inequalities based on simple mixed-integer sets

In this paper we use facets of mixed-integer sets with two and three variables to derive valid inequalities for integer sets defined by a single equation. These inequalities also define facets of the master cyclic group polyhedron of Gomory. Facets of this polyhedron give strong valid inequalities for general mixed-integer sets, such as the well-known … Read more

The Bundle Method in Combinatorial Optimization

We propose a dynamic version of the bundle method to get approximate solutions to semidefinite programs with a nearly arbitrary number of linear inequalities. Our approach is based on Lagrangian duality, where the inequalities are dualized, and only a basic set of constraints is maintained explicitly. This leads to function evaluations requiring to solve a … Read more

Decomposition and Dynamic Cut Generation in Integer Linear Programming

Decomposition algorithms such as Lagrangian relaxation and Dantzig-Wolfe decomposition are well-known methods that can be used to generate bounds for mixed-integer linear programming problems. Traditionally, these methods have been viewed as distinct from polyhedral methods, in which bounds are obtained by dynamically generating valid inequalities to strengthen the linear programming relaxation. Recently, a number of … Read more

Lot Sizing with Inventory Bounds and Fixed Costs: Polyhedral Study and Computation

We investigate the polyhedral structure of the lot-sizing problem with inventory bounds. We consider two models, one with linear costs on inventory, the other with linear and fixed costs on inventory. For both models, we identify facet-defining inequalities that make use of the inventory capacities explicitly and give exact separation algorithms. We also give a … Read more

Cover and pack inequalities for (mixed) integer programming

We review strong inequalities for fundamental knapsack relaxations of (mixed) integer programs. These relaxations are the 0-1 knapsack set, the mixed 0-1 knapsack set, the integer knapsack set, and the mixed integer knapsack set. Our aim is to give a unified presentation of the inequalities based on covers and packs and highlight the connections among … Read more

Using selective orthonormalization to update the analytic center after the addition of multiple cuts

We study the issue of updating the analytic center after multiple cutting planes have been added through the analytic center of the current polytope in Euclidean n-space. This is an important issue that arises at every `stage’ in a cutting plane algorithm. If q cuts are to be added, with q no larger than n, … Read more

Lagrangean Duality Applied on Vehicle Routing with Time Windows

This paper presents the results of the application of a non-differentiable optimization method in connection with the Vehicle Routing Problem with Time Windows (VRPTW). The VRPTW is an extension of the Vehicle Routing Problem. In the VRPTW the service at each customer must start within an associated time window. The Shortest Path decomposition of the … Read more

A Cutting Plane Algorithm for Large Scale Semidefinite Relaxations

The recent spectral bundle method allows to compute, within reasonable time, approximate dual solutions of large scale semidefinite quadratic 0-1 programming relaxations. We show that it also generates a sequence of primal approximations that converge to a primal optimal solution. Separating with respect to these approximations gives rise to a cutting plane algorithm that converges … Read more

The Sample Average Approximation Method Applied to Stochastic Routing Problems: A Computational Study

The sample average approximation (SAA) method is an approach for solving stochastic optimization problems by using Monte Carlo simulation. In this technique the expected objective function of the stochastic problem is approximated by a sample average estimate derived from a random sample. The resulting sample average approximating problem is then solved by deterministic optimization techniques. … Read more