The Integrated Lot Sizing and Cutting Stock Problem in an Automotive Spring Factory

In this paper, a manufacturer of automotive springs is studied in order to reduce inventory costs and losses in the steel bar cutting process. For that, a mathematical model is proposed, focused on the short term decisions of the company, and considering parallel machines and operational constraints, besides the demand, inventory costs and limits for … Read more

Strong valid inequalities for a class of concave submodular minimization problems under cardinality constraints

We study the polyhedral convex hull structure of a mixed-integer set which arises in a class of cardinality-constrained concave submodular minimization problems. This class of problems has an objective function in the form of $f(a^\top x)$, where $f$ is a univariate concave function, $a$ is a non-negative vector, and $x$ is a binary vector of … Read more

Presolving Linear Bilevel Optimization Problems

Linear bilevel optimization problems are known to be strongly NP-hard and the computational techniques to solve these problems are often motivated by techniques from single-level mixed-integer optimization. Thus, during the last years and decades many branch-and-bound methods, cutting planes, or heuristics have been proposed. On the other hand, there is almost no literature on presolving … Read more

Decomposition Methods for Global Solutions of Mixed-Integer Linear Programs

This paper introduces two decomposition-based methods for two-block mixed-integer linear programs (MILPs), which aim to take advantage of separable structures of the original problem by solving a sequence of lower-dimensional MILPs. The first method is based on the $\ell_1$-augmented Lagrangian method (ALM), and the second one is based on a modified alternating direction method of … Read more

Scaling Up Exact Neural Network Compression by ReLU Stability

We can compress a neural network while exactly preserving its underlying functionality with respect to a given input domain if some of its neurons are stable. However, current approaches to determine the stability of neurons in networks with Rectified Linear Unit (ReLU) activations require solving or finding a good approximation to multiple discrete optimization problems. … Read more

An exact price-cut-and-enumerate method for the capacitated multi-trip vehicle routing problem with time windows

We consider the capacitated multi-trip vehicle routing problem with time windows (CMTVRPTW), where vehicles are allowed to make multiple trips. The ability to perform multiple trips is necessary for some real-world applications where the vehicle capacity, the trip duration, or the number of drivers or vehicles is limited. However, it substantially increases the solution difficulty … Read more

On the Structure of Decision Diagram-Representable Mixed Integer Programs with Application to Unit Commitment

Over the past decade, decision diagrams (DDs) have been used to model and solve integer programming and combinatorial optimization problems. Despite successful performance of DDs in solving various discrete optimization problems, their extension to model mixed integer programs (MIPs) such as those appearing in energy applications has been lacking. More broadly, the question on which … Read more

An Axiomatic Distance Methodology for Aggregating Multimodal Evaluations

This work introduces a multimodal data aggregation methodology featuring optimization models and algorithms for jointly aggregating heterogenous ordinal and cardinal evaluation inputs into a consensus evaluation. Mathematical modeling components are derived to enforce three types of logical couplings between the collective ordinal and cardinal evaluations: Rating and ranking preferences, numerical and ordinal estimates, and rating … Read more

A Computational Status Update for Exact Rational Mixed Integer Programming

The last milestone achievement for the roundoff-error-free solution of general mixed integer programs over the rational numbers was a hybrid-precision branch-and-bound algorithm published by Cook, Koch, Steffy, and Wolter in 2013. We describe a substantial revision and extension of this framework that integrates symbolic presolving, features an exact repair step for solutions from primal heuristics, … Read more

Set characterizations and convex extensions for geometric convex-hull proofs

In the present work, we consider Zuckerberg’s method for geometric convex-hull proofs introduced in [Geometric proofs for convex hull defining formulations, Operations Research Letters 44(5), 625–629 (2016)]. It has only been scarcely adopted in the literature so far, despite the great flexibility in designing algorithmic proofs for the completeness of polyhedral descriptions that it offers. … Read more