Computational testing of exact mixed knapsack separation for MIP problems

In this paper we study an exact separation algorithm for mixed knapsack sets with the aim of evaluating its effectiveness in a cutting plane algorithm for Mixed-Integer Programming. First proposed by Boyd in the 90’s, exact knapsack separation has recently found a renewed interest. In this paper we present a “lightweight” exact separation procedure for … Read more

A Branch-and-cut Algorithm for Integer Bilevel Linear Programs

We describe a rudimentary branch-and-cut algorithm for solving integer bilevel linear programs that extends existing techniques for standard integer linear programs to this very challenging computational setting. The algorithm improves on the branch-and-bound algorithm of Moore and Bard in that it uses cutting plane techniques to produce improved bounds, does not require specialized branching strategies, … Read more

Algorithms for stochastic lot-sizing problems with backlogging

As a traditional model in the operations research and management science domain, lot-sizing problem is embedded in many application problems such as production and inventory planning and has been consistently drawing attentions from researchers. There is significant research progress on polynomial time algorithm developments for deterministic uncapacitated lot-sizing problems based on Wagner-and-Whitin property. However, in … Read more

The Value Function of a Mixed-Integer Linear Program with a Single Constraint

The value function of a mixed-integer linear program (MILP) is a function that returns the optimal solution value as a function of the right-hand side. In this paper, we analyze the structure of the value function of a MILP with a single constraint. We show that the value function is uniquely determined by a finite … Read more

A Class Representative Model for Pure Parsimony Haplotyping

Parsimonious haplotype estimation from aligned Single Nucleotide Polymorphism (SNP) fragments consists of finding the minimum number of haplotypes necessary to explain a given set of genotypes. This problem is known to be NP-Hard. Here we describe a new integer linear-programming model to tackle this problem based on the concept of class representatives, already used for … Read more

Parallel Approximation, and Integer Programming Reformulation

We analyze two integer programming reformulations of the n-dimensional knapsack feasibility problem without assuming any structure on the weight vector $a.$ Both reformulations have a constraint matrix in which the columns form a reduced basis in the sense of Lenstra, Lenstra, and Lov\’asz. The nullspace reformulation of Aardal, Hurkens and Lenstra has n-1 variables, and … Read more

Mingling: Mixed-Integer Rounding with Bounds

Mixed-integer rounding (MIR) is a simple, yet powerful procedure for generating valid inequalities for mixed-integer programs. When used as cutting planes, MIR inequalities are very effective for problems with unbounded integer variables. For problems with bounded integer variables, however, cutting planes based on lifting techniques appear to be more effective. This is not surprising as … Read more

Computational Experience with a Software Framework for Parallel Integer Programming

In this paper, we discuss the challenges that arise in parallelizing algorithms for solving mixed integer linear programs and introduce a software framework that aims to address these challenges. The framework was designed specifically with support for implementation of relaxation-based branch-and-bound algorithms in mind. Achieving efficiency for such algorithms is particularly challenging and involves a … Read more

Single Item Lot-Sizing with Nondecreasing Capacities

We consider the single item lot-sizing problem with capacities that are non-decreasing over time. When the cost function is i) non-speculative or Wagner-Whitin (for instance, constant unit production costs and non-negative unit holding costs), and ii) the production set-up costs are non-increasing over time, it is known that the minimum cost lot-sizing problem is polynomially … Read more

Algorithms to Separate {0,1/2}-Chvatal-Gomory Cuts

Chvatal-Gomory cuts are among the most well-known classes of cutting planes for general integer linear programs (ILPs). In case the constraint multipliers are either 0 or 1/2, such cuts are known as {0, 1/2}-cuts. It has been proven by Caprara and Fischetti (1996) that separation of {0, 1/2}-cuts is NP-hard. In this paper, we study … Read more