On n-step MIR and Partition Inequalities for Integer Knapsack and Single-node Capacitated Flow Sets

Pochet and Wolsey [Y. Pochet, L.A. Wolsey, Integer knapsack and flow covers with divisible coefficients: polyhedra, optimization and separation. Discrete Applied Mathematics 59(1995) 57-74] introduced partition inequalities for three substructures arising in various mixed integer programs, namely the integer knapsack set with nonnegative divisible/arbitrary coefficients and two forms of single-node capacitated flow set with divisible … Read more

Recoverable Robust Knapsacks: $\GammahBcScenarios

In this paper, we investigate the recoverable robust knapsack problem, where the uncertainty of the item weights follows the approach of Bertsimas and Sim (2003,2004). In contrast to the robust approach, a limited recovery action is allowed, i.e., upto k items may be removed when the actual weights are known. This problem is motivated by … Read more

Bound reduction using pairs of linear inequalities

We describe a procedure to reduce variable bounds in Mixed Integer Nonlinear Programming (MINLP) as well as Mixed Integer Linear Programming (MILP) problems. The procedure works by combining pairs of inequalities of a linear programming (LP) relaxation of the problem. This bound reduction technique extends the implied bounds procedure used in MINLP and MILP and … Read more

Dippy — a simplified interface for advanced mixed-integer programming

Mathematical modelling languages such as AMPL, GAMS, and Xpress-MP enable mathematical models such as mixed-integer linear programmes (MILPs) to be expressed clearly for solution in solvers such as CPLEX, MINOS and Gurobi. However some models are sufficiently difficult that they cannot be solved using “out-of-the-box” solvers, and customisation of the solver framework to exploit model-specific … Read more

On the hyperplanes arrangements in mixed-integer techniques

This paper is concerned with the improved constraints handling in mixed-integer optimization problems. The novel element is the reduction of the number of binary variables used for expressing the complement of a convex (polytopic) region. As a generalization, the problem of representing the complement of a possibly non-connected union of such convex sets is detailed. … Read more

A note on the MIR closure and basic relaxations of polyhedra

Anderson, Cornuejols and Li (2005) show that for a polyhedral mixed integer set defined by a constraint system Ax >= b, where x is n-dimensional, along with integrality restrictions on some of the variables, any split cut is in fact a split cut for a “basic relaxation”, i.e., one defined by a subset of linearly … Read more

Formulations for Dynamic Lot Sizing with Service Levels

In this paper, we study deterministic dynamic lot-sizing problems with service level constraints on the total number of periods in which backorders can occur over the finite planning horizon. We give a natural mixed integer programming formulation for the single item problem (LS-SL-I) and study the structure of its solution. We show that an optimal … Read more

Partial Convexification of General MIPs by Dantzig-Wolfe Reformulation

Dantzig-Wolfe decomposition is well-known to provide strong dual bounds for specially structured mixed integer programs (MIPs) in practice. However, the method is not part of any state-of-the-art MIP solver: it needs tailoring to the particular problem; the typical bordered block-diagonal matrix structure determines the decomposition; the resulting column generation subproblems need to be solved efficiently; … Read more

Optimizing the Layout of Proportional Symbol Maps: Polyhedra and Computation

Proportional symbol maps are a cartographic tool to assist in the visualization and analysis of quantitative data associated with specific locations, such as earthquake magnitudes, oil well production, and temperature at weather stations. As the name suggests, symbol sizes are proportional to the magnitude of the physical quantities that they represent. We present two novel … Read more

Using the analytic center in the feasibility pump

The feasibility pump (FP) [5,7] has proved to be a successful heuristic for finding feasible solutions of mixed integer linear problems (MILPs). FP was improved in [1] for finding better quality solutions. Briefly, FP alternates between two sequences of points: one of feasible so- lutions for the relaxed problem (but not integer), and another of … Read more