Orbital Branching

We introduce orbital branching, an effective branching method for integer programs containing a great deal of symmetry. The method is based on computing groups of variables that are equivalent with respect to the symmetry remaining in the problem after branching, including symmetry which is not present at the root node. These groups of equivalent variables, … Read more

Cardinality Cuts: New Cutting Planes for 0-1 Programming

We present new valid inequalities that work in similar ways to well known cover inequalities.The differences exist in three aspects. First difference is in the generation of the inequalities. The method used in generation of the new cuts is more practical in contrast to classical cover inequalities. Second difference is the more general applicability, i.e., … Read more

The Mixing-MIR Set with Divisible Capacities

We study the set $S = \{(x, y) \in \Re_{+} \times Z^{n}: x + B_{j} y_{j} \geq b_{j}, j = 1, \ldots, n\}$, where $B_{j}, b_{j} \in \Re_{+} – \{0\}$, $j = 1, \ldots, n$, and $B_{1} | \cdots | B_{n}$. The set $S$ generalizes the mixed-integer rounding (MIR) set of Nemhauser and Wolsey and … Read more

An integer programming approach to the OSPF weight setting problem

Under the Open Shortest Path First (OSPF) protocol, traffic flow in an Internet Protocol (IP) network is routed on the shortest paths between each source and destination. The shortest path is calculated based on pre-assigned weights on the network links. The OSPF weight setting problem is to determine a set of weights such that, if … Read more

Copositive and Semidefinite Relaxations of the Quadratic Assignment Problem

Semidefinite relaxations of the quadratic assignment problem (QAP) have recently turned out to provide good approximations to the optimal value of QAP. We take a systematic look at various conic relaxations of QAP. We first show that QAP can equivalently be formulated as a linear program over the cone of completely positive matrices. Since it … Read more

Approximate formulations for 0-1 knapsack sets

A classical theorem in Combinatorial Optimization proves the existence of fully polynomial- time approximation schemes for the knapsack problem. In a recent paper, Van Vyve and Wolsey ask whether for each 0 < epsilon ≤ 1 there exists an extended formulation for the knapsack problem, of size polynomial in the number of variables and/or 1/epsilon ... Read more

On the Copositive Representation of Binary and Continuous Nonconvex Quadratic Programs

We establish that any nonconvex quadratic program having a mix of binary and continuous variables over a bounded feasible set can be represented as a linear program over the dual of the cone of copositive matrices. This result can be viewed as an extension of earlier separate results, which have established the copositive representation of … Read more

On the complexity of cutting plane proofs using split cuts

We prove that cutting-plane proofs which use split cuts have exponential length in the worst case. Split cuts, defined by Cook, Kannan, Schrijver (1993), are known to be equivalent to a number of other classes of cuts, namely mixed-integer rounding (MIR) cuts, Gomory mixed-integer cuts, and disjunctive cuts. Our result thus implies the exponential worst-case … Read more

Lookahead Branching for Mixed Integer Programming

We consider the effectiveness of a lookahead branching method for the selection of branching variable in branch-and-bound method for mixed integer programming. Specifically, we ask the following question: by taking into account the impact of the current branching decision on the bounds of the child nodes two levels deeper than the current node, can better … Read more

n-step MIR Functions: Facets for Finite and Infinite Group Problems

The n-step mixed integer rounding (MIR) functions are used to generate n-step MIR inequalities for (mixed) integer programming problems (Kianfar and Fathi, 2006). We show that these functions are sources for generating extreme valid inequalities (facets) for group problems. We first prove the n-step MIR function, for any positive integer n, generates two-slope facets for … Read more