A Unified Approach for Maximizing Continuous $\gamma$-weakly DR-submodular Functions

\(\) This paper presents a unified approach for maximizing continuous \(\gamma\)-weakly DR-submodular functions that encompasses a range of settings and oracle access types. Our approach includes a Frank-Wolfe type offline algorithm for both monotone and non-monotone functions, with different restrictions on the convex feasible region. We consider settings where the oracle provides access to either … Read more

A Primal-Dual Frank-Wolfe Algorithm for Linear Programming

\(\) We present two first-order primal-dual algorithms for solving saddle point formulations of linear programs, namely FWLP (Frank-Wolfe Linear Programming) and FWLP-P. The former iteratively applies the Frank-Wolfe algorithm to both the primal and dual of the saddle point formulation of a standard-form LP. The latter is a modification of FWLP in which regularizing perturbations … Read more

A low-rank augmented Lagrangian method for large-scale semidefinite programming based on a hybrid convex-nonconvex approach

\(\) This paper introduces HALLaR, a new first-order method for solving large-scale semidefinite programs (SDPs) with bounded domain. HALLaR is an inexact augmented Lagrangian (AL) method where the AL subproblems are solved by a novel hybrid low-rank (HLR) method. The recipe behind HLR is based on two key ingredients: 1) an adaptive inexact proximal point … Read more

Nonlinear Distributionally Robust Optimization

This article focuses on a class of distributionally robust optimization (DRO) problems where, unlike the growing body of the literature, the objective function is potentially non-linear in the distribution. Existing methods to optimize nonlinear functions in probability space use the Frechet derivatives, which present both theoretical and computational challenges. Motivated by this, we propose an … Read more

On a Frank-Wolfe Approach for Abs-smooth Functions

We propose an algorithm which appears to be the first bridge between the fields of conditional gradient methods and abs-smooth optimization. Our problem setting is motivated by various applications that lead to nonsmoothness, such as $\ell_1$ regularization, phase retrieval problems, or ReLU activation in machine learning. To handle the nonsmoothness in our problem, we propose … Read more