Calmness modulus of linear semi-infinite programs

Our main goal is to compute or estimate the calmness modulus of the argmin mapping of linear semi-infinite optimization problems under canonical perturbations, i.e., perturbations of the objective function together with continuous perturbations of the right-hand side of the constraint system (with respect to an index ranging in a compact Hausdorff space). Specifically, we provide … Read more

Robustness Analysis of HottTopixx, a Linear Programming Model for Factoring Nonnegative Matrices

Although nonnegative matrix factorization (NMF) is NP-hard in general, it has been shown very recently that it is tractable under the assumption that the input nonnegative data matrix is separable (that is, there exists a cone spanned by a small subset of the columns containing all columns). Since then, several algorithms have been designed to … Read more

Improving an interior-point approach for large block-angular problems by hybrid preconditioners

The computational time required by interior-point methods is often dominated by the solution of linear systems of equations. An efficient specialized interior-point algorithm for primal block-angular problems has been used to solve these systems by combining Cholesky factorizations for the block constraints and a conjugate gradient based on a power series preconditioner for the linking … Read more

Solving Security Constrained Optimal Power Flow Problems by a Structure Exploiting Interior Point Method

The aim of this paper is to demonstrate a new approach to solve the linearized (n-1) security constrained optimal power flow (SCOPF) problem by a structure exploiting interior point solver. Firstly, we present a reformulation of the linearized SCOPF model, in which most matrices that need to be factorized are constant. Hence, most factorizations and … Read more

A new warmstarting strategy for the primal-dual column generation method

This paper presents a new warmstarting technique in the context of a primal-dual column generation method applied to solve a particular class of combinatorial optimization problems. The technique relies on calculating an initial point and on solving auxiliary linear optimization problems to determine the step direction needed to fully restore primal and dual feasibilities after … Read more

Factoring nonnegative matrices with linear programs

This paper describes a new approach for computing nonnegative matrix factorizations (NMFs) with linear programming. The key idea is a data-driven model for the factorization, in which the most salient features in the data are used to express the remaining features. More precisely, given a data matrix X, the algorithm identifies a matrix C that … Read more

ON AN EFFICIENT IMPLEMENTATION OF THE FACE ALGORITHM FOR LINEAR PROGRAMMING

In this paper, we consider the solution of the standard linear programming (LP). A remarkable result in LP claims that all optimal solutions form an optimal face of the underlying polyhedron. In practice, many real-world problems have infinitely many optimal solutions and pursuing the optimal face, not just an optimal vertex, is quite desirable. The … Read more

Parallel distributed-memory simplex for large-scale stochastic LP problems

We present a parallelization of the revised simplex method for large extensive forms of two-stage stochastic linear programming (LP) problems. These problems have been considered too large to solve with the simplex method; instead, decomposition approaches based on Benders decomposition or, more recently, interior-point methods are generally used. However, these approaches do not provide optimal … Read more

On Chubanov’s method for Linear Programming

We discuss the method recently proposed by S. Chubanov for the linear feasibility problem. We present new, concise proofs and interpretations of some of his results. We then show how our proofs can be used to find strongly polynomial time algorithms for special classes of linear feasibility problems. Under certain conditions, these results provide new … Read more

Decomposition Methods for Large Scale LP Decoding

When binary linear error-correcting codes are used over symmetric channels, a relaxed version of the maximum likelihood decoding problem can be stated as a linear program (LP). This LP decoder can be used to decode at bit-error-rates comparable to state-of-the-art belief propagation (BP) decoders, but with significantly stronger theoretical guarantees. However, LP decoding when implemented … Read more