On the upper Lipschitz property of the KKT mapping for nonlinear semidefinite optimization

In this note, we prove that the KKT mapping for nonlinear semidefinite optimization problem is upper Lipschitz continuous at the KKT point, under the second-order sufficient optimality conditions and the strict Robinson constraint qualification. ArticleDownload View PDF

Robust truss optimization using the sequential parametric convex approximation method

We study the design of robust truss structures under mechanical equilibrium, displacements and stress constraints. Our main objective is to minimize the total amount of material, for the purpose of finding the most economic structure. A robust design is found by considering load perturbations. The nature of the constraints makes the mathematical program nonconvex. In … Read more

Using the Johnson-Lindenstrauss lemma in linear and integer programming

The Johnson-Lindenstrauss lemma allows dimension reduction on real vectors with low distortion on their pairwise Euclidean distances. This result is often used in algorithms such as $k$-means or $k$ nearest neighbours since they only use Euclidean distances, and has sometimes been used in optimization algorithms involving the minimization of Euclidean distances. In this paper we … Read more

Solving SDP Completely with an Interior Point Oracle

We suppose the existence of an oracle which solves any semidefinite programming (SDP) problem satisfying Slater’s condition simultaneously at its primal and dual sides. We note that such an oracle might not be able to directly solve general SDPs even after certain regularization schemes are applied. In this work we fill this gap and show … Read more

A Polynomial Column-wise Rescaling von Neumann Algorithm

Recently Chubanov proposed a method which solves homogeneous linear equality systems with positive variables in polynomial time. Chubanov’s method can be considered as a column-wise rescaling procedure. We adapt Chubanov’s method to the von Neumann problem, and so we design a polynomial time column-wise rescaling von Neumann algorithm. This algorithm is the first variant of … Read more

Second-Order Cone Programming for P-Spline Simulation Metamodeling

This paper approximates simulation models by B-splines with a penalty on high-order finite differences of the coefficients of adjacent B-splines. The penalty prevents overfitting. The simulation output is assumed to be nonnegative. The nonnegative spline simulation metamodel is casted as a second-order cone programming model, which can be solved efficiently by modern optimization techniques. The … Read more

An efficient second-order cone programming approach for optimal selection in tree breeding

An important problem in tree breeding is optimal selection from candidate pedigree members to produce the highest performance in seed orchards, while conserving essential genetic diversity. The most beneficial members should contribute as much as possible, but such selection of orchard parents would reduce performance of the orchard progeny due to serious inbreeding. To avoid … Read more

Exact duals and short certificates of infeasibility and weak infeasibility in conic linear programming

We describe simple and exact duals, and certificates of infeasibility and weak infeasibility in conic linear programming which do not rely on any constraint qualification, and retain most of the simplicity of the Lagrange dual. In particular, some of our infeasibility certificates generalize the row echelon form of a linear system of equations, and the … Read more

A cutting-plane approach for large-scale capacitated multi-period facility location using a specialized interior-point method

We propose a cutting-plane approach (namely, Benders decomposition) for a class of capacitated multi-period facility location problems. The novelty of this approach lies on the use of a specialized interior-point method for solving the Benders subproblems. The primal block-angular structure of the resulting linear optimization problems is exploited by the interior-point method, allowing the (either … Read more

Alternating Direction Method of Multipliers for Linear Programming

Recently the alternating direction method of multipliers (ADMM) has been widely used for various applications arising in scientific computing areas. Most of these application models are, or can be easily reformulated as, linearly constrained convex minimization models with separable nonlinear objective functions. In this note we show that ADMM can also be easily used for … Read more