Tools for primal degenerate linear programs: IPS, DCA, and PE

This paper describes three recent tools for dealing with primal degeneracy in linear programming. The first one is the Improved Primal Simplex (IPS) algorithm which turns degeneracy into a possible advantage. The constraints of the original problem are dynamically partitioned based on the numerical values of the current basic variables. The idea is to work … Read more

Efficient First-Order Methods for Linear Programming and Semidefinite Programming

We present a simple transformation of any linear program or semidefinite program into an equivalent convex optimization problem whose only constraints are linear equations. The objective function is defined on the whole space, making virtually all subgradient methods be immediately applicable. We observe, moreover, that the objective function is naturally “smoothed,” thereby allowing most first-order … Read more

A Gentle, Geometric Introduction to Copositive Optimization

This paper illustrates the fundamental connection between nonconvex quadratic optimization and copositive optimization—a connection that allows the reformulation of nonconvex quadratic problems as convex ones in a unified way. We intend the paper for readers new to the area, and hence the exposition is largely self-contained. We focus on examples having just a few variables … Read more

Semidefinite Optimization Approaches to Applications in Facility Layout and Logistics

The main contributions of this thesis are the comparison of existing and the design of new exact approaches based on linear, quadratic and semidefinite relaxations for row layout problems and several applications in logistic. In particular we demonstrate that our suggested semidefinite approach is the strongest exact method to date for most row layout problems. … Read more

A Semidefinite Optimization Approach to the Parallel Row Ordering Problem

The $k$-Parallel Row Ordering Problem (kPROP) is an extension of the Single-Row Facility Layout Problem (SRFLP) that considers arrangements of the departments along more than one row. We propose an exact algorithm for the kPROP that extends the semidefinite programming approach for the SRFLP by modelling inter-row distances as products of ordering variables. For k=2 … Read more

The Checkpoint Ordering Problem

We suggest a new variant of a row layout problem: Find an ordering of n departments with given lengths such that the total weighted sum of their distances to a given checkpoint is minimized. The Checkpoint Ordering Problem (COP) is both of theoretical and practical interest. It has several applications and is conceptually related to … Read more

A primal-simplex based Tardos’ algorithm

In the mid-eighties Tardos proposed a strongly polynomial algorithm for solving linear programming problems for which the size of the coefficient matrix is polynomially bounded by the dimension. Combining Orlin’s primal-based modification and Mizuno’s use of the simplex method, we introduce a modification of Tardos’ algorithm considering only the primal problem and using simplex method … Read more

Matrix monotonicity and self-concordance:how to handle quantum entropy in optimization problems

Let $g$ be a continuously differentiable function whose derivative is matrix monotone on positive semi-axis. Such a function induces a function $\phi (x)=tr(g(x))$ on the cone of squares of an arbitrary Euclidean Jordan algebra. We show that $\phi (x) -\ln \det(x)$ is a self-concordant function on the interior of the cone. We also show that … Read more