PuLP: A Linear Programming Toolkit for Python

This paper introduces the PuLP library, an open source package that allows mathematical programs to be described in the Python computer programming language. PuLP is a high-level modelling library that leverages the power of the Python language and allows the user to create programs using expressions that are natural to the Python language, avoiding special … Read more

A smooth perceptron algorithm

The perceptron algorithm, introduced in the late fifties in the machine learning community, is a simple greedy algorithm for finding a solution to a finite set of linear inequalities. The algorithm’s main advantages are its simplicity and noise tolerance. The algorithm’s main disadvantage is its slow convergence rate. We propose a modified version of the … Read more

Properties of a Cutting Plane Method for Semidefinite Programming

We analyze the properties of an interior point cutting plane algorithm that is based on a semi-infinite linear formulation of the dual semidefinite program. The cutting plane algorithm approximately solves a linear relaxation of the dual semidefinite program in every iteration and relies on a separation oracle that returns linear cutting planes. We show that … Read more

An inexact accelerated proximal gradient method for large scale linearly constrained convex SDP

The accelerated proximal gradient (APG) method, first proposed by Nesterov, and later refined by Beck and Teboulle, and studied in a unifying manner by Tseng has proven to be highly efficient in solving some classes of large scale structured convex optimization (possibly nonsmooth) problems, including nuclear norm minimization problems in matrix completion and $l_1$ minimization … Read more

An exact duality theory for semidefinite programming based on sums of squares

Farkas’ lemma is a fundamental result from linear programming providing linear certificates for infeasibility of systems of linear inequalities. In semidefinite programming, such linear certificates only exist for strongly infeasible linear matrix inequalities. We provide nonlinear algebraic certificates for all infeasible linear matrix inequalities in the spirit of real algebraic geometry: A linear matrix inequality … Read more

Sampling with respect to a class of measures arising in second-order cone optimization with rank constraints

We describe a classof measures on second-order cones as a push-forward of the Cartesian product of a probabilistic measure on positive semi-line corresponding to Gamma distribution and the uniform measure on the sphere Citationreport, Department of Mathematics, University of Notre Dame, July, 2011ArticleDownload View PDF

A Proof by the Simplex Method for the Diameter of a (0,1)-Polytope

Naddef shows that the Hirsch conjecture is true for (0,1)-polytopes by proving that the diameter of any $(0,1)$-polytope in $d$-dimensional Euclidean space is at most $d$. In this short paper, we give a simple proof for the diameter. The proof is based on the number of solutions generated by the simplex method for a linear … Read more

An efficient semidefinite programming relaxation for the graph partition problem

We derive a new semidefinite programming relaxation for the general graph partition problem (GPP). Our relaxation is based on matrix lifting with matrix variable having order equal to the number of vertices of the graph. We show that this relaxation is equivalent to the Frieze-Jerrum relaxation [A. Frieze and M. Jerrum. Improved approximation algorithms for … Read more

A Complementarity Partition Theorem for Multifold Conic Systems

Consider a homogeneous multifold convex conic system $$ Ax = 0, \; x\in K_1\times \cdots \times K_r $$ and its alternative system $$ A\transp y \in K_1^*\times \cdots \times K_r^*, $$ where $K_1,\dots, K_r$ are regular closed convex cones. We show that there is canonical partition of the index set $\{1,\dots,r\}$ determined by certain complementarity … Read more

Lower bounds for the maximum number of solutions generated by the simplex method

Kitahara and Mizuno get upper bounds for the maximum number of different basic feasible solutions generated by Dantzig�s simplex method. In this paper, we obtain lower bounds of the maximum number. Part of the results in this paper are shown in a paper by the authors as a quick report without proof. They present a … Read more