Representation of distributionally robust chance-constraints

Given $X\subset R^n$, $\varepsilon \in (0,1)$, a parametrized family of probability distributions $(\mu_{a})_{a\in A}$ on $\Omega\subset R^p$, we consider the feasible set $X^*_\varepsilon\subset X$ associated with the {\em distributionally robust} chance-constraint \[X^*_\varepsilon\,=\,\{x\in X:\:{\rm Prob}_\mu[f(x,\omega)\,>\,0]> 1-\varepsilon,\,\forall\mu\in\mathscr{M}_a\},\] where $\mathscr{M}_a$ is the set of all possibles mixtures of distributions $\mu_a$, $a\in A$. For instance and typically, the family … Read more

Moments and convex optimization for analysis and control of nonlinear partial differential equations

This work presents a convex-optimization-based framework for analysis and control of nonlinear partial differential equations. The approach uses a particular weak embedding of the nonlinear PDE, resulting in a \emph{linear} equation in the space of Borel measures. This equation is then used as a constraint of an infinite-dimensional linear programming problem (LP). This LP is … Read more

On the Complexity of Testing Attainment of the Optimal Value in Nonlinear Optimization

We prove that unless P=NP, there exists no polynomial time (or even pseudo-polynomial time) algorithm that can test whether the optimal value of a nonlinear optimization problem where the objective and constraints are given by low-degree polynomials is attained. If the degrees of these polynomials are fixed, our results along with previously-known “Frank-Wolfe type” theorems … Read more

A Globally Asymptotically Stable Polynomial Vector Field with Rational Coefficients and no Local Polynomial Lyapunov Function

We give an explicit example of a two-dimensional polynomial vector field of degree seven that has rational coefficients, is globally asymptotically stable, but does not admit an analytic Lyapunov function even locally. CitationSubmitted for publicationArticleDownload View PDF

Optimality conditions and global convergence for nonlinear semidefinite programming

Sequential optimality conditions have played a major role in unifying and extending global convergence results for several classes of algorithms for general nonlinear optimization. In this paper, we extend theses concepts for nonlinear semidefinite programming. We define two sequential optimality conditions for nonlinear semidefinite programming. The first is a natural extension of the so-called Approximate-Karush-Kuhn-Tucker … Read more

SOS-Convex Lyapunov Functions and Stability of Difference Inclusions

We introduce the concept of sos-convex Lyapunov functions for stability analysis of both linear and nonlinear difference inclusions (also known as discrete-time switched systems). These are polynomial Lyapunov functions that have an algebraic certificate of convexity and that can be efficiently found via semidefinite programming. We prove that sos-convex Lyapunov functions are universal (i.e., necessary … Read more

On Algebraic Proofs of Stability for Homogeneous Vector Fields

We prove that if a homogeneous, continuously differentiable vector field is asymptotically stable, then it admits a Lyapunov function which is the ratio of two polynomials (i.e., a rational function). We further show that when the vector field is polynomial, the Lyapunov inequalities on both the rational function and its derivative have sum of squares … Read more

Extensions of Yuan’s Lemma to fourth-order tensor system with applications

Yuan’s lemma is a basic proposition on homogeneous quadratic function system. In this paper, we extend Yuan’s lemma to 4th-order tensor system. We first give two gen- eralized definitions of positive semidefinite of 4th-order tensor, and based on them, two extensions of Yuan’s lemma are proposed. We illustrate the difference between our ex- tensions and … Read more

Exact Semidefinite Formulations for a Class of (Random and Non-Random) Nonconvex Quadratic Programs

We study a class of quadratically constrained quadratic programs (QCQPs), called {\em diagonal QCQPs\/}, which contain no off-diagonal terms $x_j x_k$ for $j \ne k$, and we provide a sufficient condition on the problem data guaranteeing that the basic Shor semidefinite relaxation is exact. Our condition complements and refines those already present in the literature … Read more

Tight-and-cheap conic relaxation for the AC optimal power flow problem

The classical alternating current optimal power flow problem is highly nonconvex and generally hard to solve. Convex relaxations, in particular semidefinite, second-order cone, convex quadratic, and linear relaxations, have recently attracted significant interest. The semidefinite relaxation is the strongest among them and is exact for many cases. However, the computational efficiency for solving large-scale semidefinite … Read more