The Inexact Spectral Bundle Method for Convex Quadratic Semidefinite Programming

We present an inexact spectral bundle method for solving convex quadratic semidefinite optimization problems. This method is a first-order method, hence requires much less computational cost each iteration than second-order approaches such as interior-point methods. In each iteration of our method, we solve an eigenvalue minimization problem inexactly, and solve a small convex quadratic semidefinite … Read more

Min-Max Theorems Related to Geometric Representations of Graphs and their SDPs

Lovasz proved a nonlinear identity relating the theta number of a graph to its smallest radius hypersphere embedding where each edge has unit length. We use this identity and its generalizations to establish min-max theorems and to translate results related to one of the graph invariants above to the other. Classical concepts in tensegrity theory … Read more

SpeeDP: A new algorithm to compute the SDP relaxations of Max-Cut for very large graphs

We consider low-rank semidefinite programming (LRSDP) relaxations of unconstrained {-1,1} quadratic problems (or, equivalently, of Max-Cut problems) that can be formulated as the nonconvex nonlinear programming problem of minimizing a quadratic function subject to separable quadratic equality constraints. We prove the equivalence of the LRSDP problem with the unconstrained minimization of a new merit function … Read more

Portfolio Selection under Model Uncertainty: A Penalized Moment-Based Optimization Approach

We present a new approach for portfolio selection when the underlying distribution of asset returns is uncertain or ambiguous to investors. In particular, we consider the case that an investor can formulate some reference financial models based on his/her prior beliefs or information, but is concerned about misspecification of the reference models and the associated … Read more

Comparing SOS and SDP relaxations of sensor network localization

We investigate the relationships between various sum of squares (SOS) and semidefinite programming (SDP) relaxations for the sensor network localization problem. In particular, we show that Biswas and Ye’s SDP relaxation is equivalent to the degree one SOS relaxation of Kim et al. We also show that Nie’s sparse-SOS relaxation is stronger than the edge-based … Read more

Burer’s Key Assumption for Semidefinite and Doubly Nonnegative Relaxations

Burer has shown that completely positive relaxations of nonconvex quadratic programs with nonnegative and binary variables are exact when the binary variables satisfy a so-called key assumption. Here we show that introducing binary variables to obtain an equivalent problem that satisfies the key assumption will not improve the semidefinite relaxation, and only marginally improve the … Read more

Parallel solver for semidefinite programming problem having sparse Schur complement matrix

SemiDefinite Programming (SDP) problem is one of the most central problems in mathematical programming. SDP provides a practical computation framework for many research fields. Some applications, however, require solving large-scale SDPs whose size exceeds the capacity of a single processor in terms of computational time and available memory. SDPARA (SemiDefinite Programming Algorithm paRAllel version) developed … Read more

Interior Point Methods for Computing Optimal Designs

In this paper we study interior point (IP) methods for solving optimal design problems. In particular, we propose a primal IP method for solving the problems with general convex optimality criteria and establish its global convergence. In addition, we reformulate the problems with A-, D- and E-criterion into linear or log-determinant semidefinite programs (SDPs) and … Read more

On Doubly Positive Semidefinite Programming Relaxations

Recently, researchers have been interested in studying the semidefinite programming (SDP) relaxation model, where the matrix is both positive semidefinite and entry-wise nonnegative, for quadratically constrained quadratic programming (QCQP). Comparing to the basic SDP relaxation, this doubly-positive SDP model possesses additional O(n2) constraints, which makes the SDP solution complexity substantially higher than that for the … Read more

The Approach of Moments for Polynomial Equations

In this article we present the moment based approach for computing all real solutions of a given system of polynomial equations. This approach builds upon a lifting method for constructing semidefinite relaxations of several nonconvex optimization problems, using sums of squares of polynomials and the dual theory of moments. A crucial ingredient is a semidefinite … Read more