Parallel implementation of a semidefinite programming solver based on CSDP on a distributed memory cluster

In this paper we present the algorithmic framework and practical aspects of implementing a parallel version of a primal-dual semidefinite programming solver on a distributed memory computer cluster. Our implementation is based on the CSDP solver and uses a message passing interface (MPI), and the ScaLAPACK library. A new feature is implemented to deal with … Read more

Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes

This paper is concerned with the single-row facility layout problem (SRFLP). A globally optimal solution to the SRFLP is a linear placement of rectangular facilities with varying lengths that achieves the minimum total cost associated with the (known or projected) inter- actions between them. We demonstrate that the combination of a semidefinite programming relaxation with … Read more

Lower Bounds for Measurable Chromatic Numbers

The Lov\’asz theta function provides a lower bound for the chromatic number of finite graphs based on the solution of a semidefinite program. In this paper we generalize it so that it gives a lower bound for the measurable chromatic number of distance graphs on compact metric spaces. In particular we consider distance graphs on … Read more

Exploiting Sparsity in SDP Relaxation for Sensor Network Localization

A sensor network localization problem can be formulated as a quadratic optimization problem (QOP). For quadratic optimization problems, semidefinite programming (SDP) relaxation by Lasserre with relaxation order 1 for general polynomial optimization problems (POPs) is known to be equivalent to the sparse SDP relaxation by Waki {¥it et al.} with relaxation order 1, except the … Read more

Limiting behavior and analyticity of weighted central paths in semidefinite programming

In this paper we analyze the limiting behavior of infeasible weighted central paths in semidefinite programming under the assumption that a strictly complementary solution exists. We show that the paths associated with the “square root” symmetrization of the weighted centrality condition are analytic functions of the barrier parameter $\mu$ even at $\mu=0$ if and only … Read more

Block-diagonal semidefinite programming hierarchies for 0/1 programming

Lovasz and Schrijver, and later Lasserre, proposed hierarchies of semidefinite programming relaxations for general 0/1 linear programming problems. In this paper these two constructions are revisited and a new, block-diagonal hierarchy is proposed. It has the advantage of being computationally less costly while being at least as strong as the Lovasz-Schrijver hierarchy. It is applied … Read more

On semidefinite programming relaxations of the traveling salesman problem

We consider a new semidefinite programming (SDP) relaxation of the symmetric traveling salesman problem (TSP), obtained via an SDP relaxation of the more general quadratic assignment problem (QAP). We show that the new relaxation dominates the one in the paper: [D. Cvetkovic, M. Cangalovic and V. Kovacevic-Vucic. Semidefinite Programming Methods for the Symmetric Traveling Salesman … Read more

Relaxing the Optimality Conditions of Box QP

We present semidefinite relaxations of nonconvex, box-constrained quadratic programming, which incorporate the first- and second-order necessary optimality conditions. We compare these relaxations with a basic semidefinite relaxation due to Shor, particularly in the context of branch-and-bound to determine a global optimal solution, where it is shown empirically that the new relaxations are significantly stronger. We … Read more

Sufficient and Necessary Conditions for Semidefinite Representability of Convex Hulls and Sets

The article proves sufficient conditions and necessary conditions for SDP representability of convex sets and convex hulls by proposing a new approach to construct SDP representations. The contributions of this paper are: (i) For bounded SDP representable sets $W_1,\cdots,W_m$, we give an explicit construction of an SDP representation for $conv(\cup_{k=1}^mW_k)$. This provides a technique for … Read more

A Numerical Algorithm for Block-Diagonal Decomposition of Matrix *-Algebras, Part I: Proposed Approach and Application to Semidefinite Programming

Motivated by recent interest in group-symmetry in semidefinite programming, we propose a numerical method for finding a finest simultaneous block-diagonalization of a finite number of matrices, or equivalently the irreducible decomposition of the generated matrix *-algebra. The method is composed of numerical-linear algebraic computations such as eigenvalue computation, and automatically makes full use of the … Read more