Lower bounds for approximate factorizations via semidefinite programming

The problem of approximately factoring a real or complex multivariate polynomial $f$ seeks minimal perturbations $\Delta f$ to the coefficients of the input polynomial $f$ so that the deformed polynomial $f + \Delta f$ has the desired factorization properties. Efficient algorithms exist that compute the nearest real or complex polynomials that has non-trivial factors. (see … Read more

The Difference Between 5×5 Doubly Nonnegative and Completely Positive Matrices

The convex cone of $n \times n$ completely positive (CPP) matrices and its dual cone of copositive matrices arise in several areas of applied mathematics, including optimization. Every CPP matrix is doubly nonnegative (DNN), i.e., positive semidefinite and component-wise nonnegative, and it is known that, for $n \le 4$ only, every DNN matrix is CPP. … Read more

Estimating Bounds for Quadratic Assignment Problems Associated with Hamming and Manhattan Distance Matrices based on Semidefinite Programming

Quadratic assignment problems (QAPs) with a Hamming distance matrix of a hypercube or a Manhattan distance matrix of rectangular grids arise frequently from communications and facility locations and are known to be among the hardest discrete optimization problems. In this paper we consider the issue of how to obtain lower bounds for those two classes … Read more

Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion

In this paper, we propose a semidefinite optimization (SDP) based model for the class of minimax two-stage stochastic linear optimization problems with risk aversion. The distribution of the second-stage random variables is assumed to be chosen from a set of multivariate distributions with known mean and second moment matrix. For the minimax stochastic problem with … Read more

A Newton-CG Augmented Lagrangian Method for Semidefinite Programming

We consider a Newton-CG augmented Lagrangian method for solving semidefinite programming (SDP) problems from the perspective of approximate semismooth Newton methods. In order to analyze the rate of convergence of our proposed method, we characterize the Lipschitz continuity of the corresponding solution mapping at the origin. For the inner problems, we show that the positive … Read more

Parallel implementation of a semidefinite programming solver based on CSDP on a distributed memory cluster

In this paper we present the algorithmic framework and practical aspects of implementing a parallel version of a primal-dual semidefinite programming solver on a distributed memory computer cluster. Our implementation is based on the CSDP solver and uses a message passing interface (MPI), and the ScaLAPACK library. A new feature is implemented to deal with … Read more

Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes

This paper is concerned with the single-row facility layout problem (SRFLP). A globally optimal solution to the SRFLP is a linear placement of rectangular facilities with varying lengths that achieves the minimum total cost associated with the (known or projected) inter- actions between them. We demonstrate that the combination of a semidefinite programming relaxation with … Read more

Exploiting Sparsity in SDP Relaxation for Sensor Network Localization

A sensor network localization problem can be formulated as a quadratic optimization problem (QOP). For quadratic optimization problems, semidefinite programming (SDP) relaxation by Lasserre with relaxation order 1 for general polynomial optimization problems (POPs) is known to be equivalent to the sparse SDP relaxation by Waki {¥it et al.} with relaxation order 1, except the … Read more

Lower Bounds for Measurable Chromatic Numbers

The Lov\’asz theta function provides a lower bound for the chromatic number of finite graphs based on the solution of a semidefinite program. In this paper we generalize it so that it gives a lower bound for the measurable chromatic number of distance graphs on compact metric spaces. In particular we consider distance graphs on … Read more

Limiting behavior and analyticity of weighted central paths in semidefinite programming

In this paper we analyze the limiting behavior of infeasible weighted central paths in semidefinite programming under the assumption that a strictly complementary solution exists. We show that the paths associated with the “square root” symmetrization of the weighted centrality condition are analytic functions of the barrier parameter $\mu$ even at $\mu=0$ if and only … Read more