An Improved Semidefinite Programming Relaxation for the Satisfiability Problem

The satisfiability (SAT) problem is a central problem in mathematical logic, computing theory, and artificial intelligence. An instance of SAT is specified by a set of boolean variables and a propositional formula in conjunctive normal form. Given such an instance, the SAT problem asks whether there is a truth assignment to the variables such that … Read more

Limiting behavior of the central path in semidefinite optimization

It was recently shown that, unlike in linear optimization, the central path in semidefinite optimization (SDO) does not converge to the analytic center of the optimal set in general. In this paper we analyze the limiting behavior of the central path to explain this unexpected phenomenon. This is done by deriving a new necessary and … Read more

Characterization of the limit point of the central path in semidefinite programming

In linear programming, the central path is known to converge to the analytic center of the set of optimal solutions. Recently, it has been shown that this is not necessarily true for linear semidefinite programming in the absence of strict complementarity. The present paper deals with the formulation of a convex problem whose solution defines … Read more

SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB — User’s Guide

SOSTOOLS is a free MATLAB toolbox for formulating and solving sum of squares (SOS) optimization programs. It uses a simple notation and a flexible and intuitive high-level user interface to specify the SOS programs. Currently these are solved using SeDuMi, a well-known semidefinite programming solver, while SOSTOOLS handles internally all the necessary reformulations and data … Read more

Semidefinite Programming in the Space of Partial Positive Semidefinite Matrices

We build upon the work of Fukuda et al.\ \cite{FuKoMuNa01} and Nakata et al.\ \cite{NaFuFuKoMu01}, in which the theory of partial positive semidefinite matrices has been applied to the semidefinite programming (SDP) problem as a technique for exploiting sparsity in the data. In contrast to their work, which improves an existing algorithm that is based … Read more

PENNON – A Code for Convex Nonlinear and Semidefinite Programming

We introduce a computer program PENNON for the solution of problems of convex Nonlinear and Semidefinite Programming (NLP-SDP). The algorithm used in PENNON is a generalized version of the Augmented Lagrangian method, originally introduced by Ben-Tal and Zibulevsky for convex NLP problems. We present generalization of this algorithm to convex NLP-SDP problems, as implemented in … Read more

Exact Solutions of Some Nonconvex Quadratic Optimization Problems via SDP and SOCP Relaxations

We show that SDP (semidefinite programming) and SOCP (second order cone programming) relaxations provide exact optimal solutions for a class of nonconvex quadratic optimization problems. It is a generalization of the results by S.~Zhang for a subclass of quadratic maximization problems that have nonnegative off-diagonal coefficient matrices of objective quadratic functions and diagonal coefficient matrices … Read more

DSDP4 Software User Guide

DSDP4 is an implementation of the dual-scaling algorithm for semidefinite program ming. New features in this version include a Lanczos procedure for determining the step size, more precise primal solutions, a parallel solver, and improved performance on the standard test suites. Citation ANL/MCS-TM-255; Mathematics and Computer Science Division; Argonne National Laboratory; Argonne, IL; March 2002 … Read more

Parallel Computing on Semidefinite Programs

This paper demonstrates how interior-point methods can use multiple processors efficiently to solve large semidefinite programs that arise in VLSI design, control theory, and graph coloring. Previous implementations of these methods have been restricted to a single processor. By computing and solving the Schur complement matrix in parallel, multiple processors enable the faster solution of … Read more

GloptiPoly – Global Optimization over Polynomials withMatlab and SeDuMi

GloptiPoly is a Matlab/SeDuMi add-on to build and solve convex linear matrix inequality relaxations of the (generally non-convex) global optimization problem of minimizing a multivariable polynomial function subject to polynomial inequality, equality or integer constraints. It generates a series of lower bounds monotonically converging to the global optimum. Numerical experiments show that for most of … Read more