Rapidly Solving an Online Sequence of Maximum Flow Problems

We investigate how to rapidly solve an online sequence of maximum flow problems. Sequences of maximum flow problems arise in a diverse collection of settings, including stochastic network programming and real-time scheduling of jobs on a two-processor computer. In this paper, we formulate solving an online sequence of maximum flow problems as the Maximum Flow … Read more

A partitioning algorithm for the network loading problem

This paper proposes a Benders-like partitioning algorithm to solve the network loading problem. The effort of computing integer solutions is entirely left to a pure integer programming solver while valid inequalities are generated by solving standard nonlinear multicommodity flow problems. The method is compared to alternative approaches proposed in the literature and appears to be … Read more

An Interior-Point Method for Large Scale Network Utility Maximization

We describe a specialized truncated-Newton primal-dual interior-point method that solves large scale network utility maximization problems, with concave utility functions, efficiently and reliably. Our method is not decentralized, but easily scales to problems with a million flows and links. We compare our method to a standard decentralized algorithm based on dual decomposition, and show by … Read more

Dynamic Network Utility Maximization with Delivery Contracts

We consider a multi-period variation of the network utility maximization problem that includes delivery constraints. We allow the flow utilities, link capacities and routing matrices to vary over time, and we introduce the concept of delivery contracts, which couple the flow rates across time. We describe a distributed algorithm, based on dual decomposition, that solves … Read more

SNDlib 1.0–Survivable Network Design Library

We provide information on the Survivable Network Design Library (SNDlib), a data library for fixed telecommunication network design that can be accessed at http://sndlib.zib.de. In version 1.0, the library contains data related to 22 networks which, combined with a set of selected planning parameters, leads to 830 network planning problem instances. In this paper, we … Read more

On the strength of cut-based inequalities for capacitated network design polyhedra

In this paper we study capacitated network design problems, differentiating directed, bidirected and undirected link capacity models. We complement existing polyhedral results for the three variants by new classes of facet-defining valid inequalities and unified lifting results. For this, we study the restriction of the problems to a cut of the network. First, we show … Read more

An Integer Programming Approach to the Path Selection Problems

We consider two types of path selection problems defined on arc-capacitated networks. Given an arc-capacitated network and a set of selected ordered pairs of nodes (commodity) each of which has a demand quantity, the first problem is to select a subset of commodities and setup one path for each chosen commodity to maximize profit, while … Read more

The Impact of Collusion on the Price of Anarchy in Nonatomic and Discrete Network Games

Hayrapetyan, Tardos and Wexler recently introduced a framework to study the impact of collusion in congestion games on the quality of Nash equilibria. We adopt their framework to network games and focus on the well established price of anarchy as a measure of this impact. We first investigate nonatomic network games with coalitions. For this … Read more

Approximation algorithms for metric tree cover and generalized tour and tree covers

Given a weighted undirected graph $G=(V,E)$, a tree (respectively tour) cover of an edge-weighted graph is a set of edges which forms a tree (resp. closed walk) and covers every other edge in the graph. The tree (resp. tour) cover problem is of finding a minimum weight tree (resp. tour) cover of $G$. Arkin, Halld\’orsson … Read more