An FPTAS for Optimizing a Class of Low-Rank Functions Over a Polytope

We present a fully polynomial time approximation scheme (FPTAS) for optimizing a very general class of nonlinear functions of low rank over a polytope. Our approximation scheme relies on constructing an approximate Pareto-optimal front of the linear functions which constitute the given low-rank function. In contrast to existing results in the literature, our approximation scheme … Read more

Adjoint Sensitivity Analysis for Numerical Weather Prediction: Applications to Power Grid Optimization

We present an approach to estimate adjoint sensitivities of economic metrics of relevance in the power grid with respect to physical weather variables using numerical weather prediction models. We demonstrate that this capability can significantly enhance planning and operations. We illustrate the method using a large-scale computational study where we compute sensitivities of the regional … Read more

Constrained Derivative-Free Optimization on Thin Domains

Many derivative-free methods for constrained problems are not efficient for minimizing functions on “thin” domains. Other algorithms, like those based on Augmented Lagrangians, deal with thin constraints using penalty-like strategies. When the constraints are computationally inexpensive but highly nonlinear, these methods spend many potentially expensive objective function evaluations motivated by the difficulties of improving feasibility. … Read more

On smooth relaxations of obstacle sets

We present and discuss a method to relax sets described by finitely many smooth convex inequality constraints by the level set of a single smooth convex inequality constraint. Based on error bounds and Lipschitz continuity, special attention is paid to the maximal approximation error and a guaranteed safety margin. Our results allow to safely avoid … Read more

Two new weak constraint qualifications and applications

We present two new constraint qualifications (CQ) that are weaker than the recently introduced Relaxed Constant Positive Linear Depen- dence (RCPLD) constraint qualification. RCPLD is based on the assump- tion that many subsets of the gradients of the active constraints preserve positive linear dependence locally. A major open question was to identify the exact set … Read more

The mesh adaptive direct search algorithm with treed Gaussian process surrogates

This work introduces the use of the treed Gaussian process (TGP) as a surrogate model within the mesh adaptive direct search (MADS) framework for constrained blackbox optimization. It extends the surrogate management framework (SMF) to nonsmooth optimization under general constraints. MADS uses TGP in two ways: one, as a surrogate for blackbox evaluations; and two, … Read more

Hidden convexity in partially separable optimization

The paper identifies classes of nonconvex optimization problems whose convex relaxations have optimal solutions which at the same time are global optimal solutions of the original nonconvex problems. Such a hidden convexity property was so far limited to quadratically constrained quadratic problems with one or two constraints. We extend it here to problems with some … Read more

Hidden convexity in partially separable optimization

The paper identifies classes of nonconvex optimization problems whose convex relaxations have optimal solutions which at the same time are global optimal solutions of the original nonconvex problems. Such a hidden convexity property was so far limited to quadratically constrained quadratic problems with one or two constraints. We extend it here to problems with some … Read more

Inexact projected gradient method for vector optimization

In this work, we propose an inexact projected gradient-like method for solving smooth constrained vector optimization problems. In the unconstrained case, we retrieve the steepest descent method introduced by Graña Drummond and Svaiter. In the constrained setting, the method we present extends the exact one proposed by Graña Drummond and Iusem, since it admits relative … Read more

Optimal Design of Electrical Machines: Mathematical Programming Formulations

The optimal design of electrical machines can be mathematically modeled as a mixed-integer nonlinear optimization problem. We present six variants of such a problem, and we show, through extensive computational experiments, that, even though they are mathematically equivalent, the differences in the formulations may have an impact on the numerical performances of a local optimization … Read more