Local Nonglobal Minima for Solving Large Scale Extended Trust Region Subproblems

We study large scale extended trust region subproblems (eTRS) i.e., the minimization of a general quadratic function subject to a norm constraint, known as the trust region subproblem (TRS) but with an additional linear inequality constraint. It is well known that strong duality holds for the TRS and that there are efficient algorithms for solving … Read more

The Riemannian Barzilai-Borwein method with nonmonotone line search and the matrix geometric mean computation

The Barzilai-Borwein method, an effective gradient descent method with clever choice of the step-length, is adapted from nonlinear optimization to Riemannian manifold optimization. More generally, global convergence of a nonmonotone line-search strategy for Riemannian optimization algorithms is proved under some standard assumptions. By a set of numerical tests, the Riemannian Barzilai-Borwein method with nonmonotone line-search … Read more

The use of squared slack variables in nonlinear second-order cone programming

In traditional nonlinear programming, the technique of converting a problem with inequality constraints into a problem containing only equality constraints, by the addition of squared slack variables, is well-known. Unfortunately, it is considered to be an avoided technique in the optimization community, since the advantages usually do not compensate for the disadvantages, like the increase … Read more

Optimality conditions for nonlinear semidefinite programming via squared slack variables

In this work, we derive second-order optimality conditions for nonlinear semidefinite programming (NSDP) problems, by reformulating it as an ordinary nonlinear programming problem using squared slack variables. We first consider the correspondence between Karush-Kuhn-Tucker points and regularity conditions for the general NSDP and its reformulation via slack variables. Then, we obtain a pair of “no-gap” … Read more

Optimization over Structured Subsets of Positive Semidefinite Matrices via Column Generation

We develop algorithms for inner approximating the cone of positive semidefinite matrices via linear programming and second order cone programming. Starting with an initial linear algebraic approximation suggested recently by Ahmadi and Majumdar, we describe an iterative process through which our approximation is improved at every step. This is done using ideas from column generation … Read more

Strengthening the SDP Relaxation of AC Power Flows with Convex Envelopes, Bound Tightening, and Lifted Nonlinear Cuts

This paper considers state-of-the-art convex relaxations for the AC power flow equations and introduces new valid cuts based on convex envelopes and lifted nonlinear constraints. These valid linear inequalities strengthen existing semidefinite and quadratic programming relaxations and dominate existing cuts proposed in the litterature. Together with model intersections and bound tightening, the new linear cuts … Read more

Solutions of a constrained Hermitian matrix-valued function optimization problem with applications

Let $f(X) =\left( XC + D\right)M\left(XC + D \right)^{*} – G$ be a given nonlinear Hermitian matrix-valued function with $M = M^*$ and $G = G^*$, and assume that the variable matrix $X$ satisfies the consistent linear matrix equation $XA = B$. This paper shows how to characterize the semi-definiteness of $f(X)$ subject to all … Read more

A framework for simultaneous aerodynamic design optimization in the presence of chaos

Integrating existing solvers for unsteady partial differential equations (PDEs) into a simultaneous optimization method is challenging due to the forward- in-time information propagation of classical time-stepping methods. This paper applies the simultaneous single-step one-shot optimization method to a reformulated unsteady PDE constraint that allows for both forward- and backward-in-time information propagation. Especially in the presence … Read more

Backward Step Control for Global Newton-type Methods

We present and analyze a new damping approach called backward step control for the globalization of the convergence of Newton-type methods for the numerical solution of nonlinear root-finding problems. We provide and discuss reasonable assumptions that imply convergence of backward step control on the basis of generalized Newton paths in conjunction with a backward analysis … Read more

Global Convergence of ADMM in Nonconvex Nonsmooth Optimization

In this paper, we analyze the convergence of the alternating direction method of multipliers (ADMM) for minimizing a nonconvex and possibly nonsmooth objective function, $\phi(x_1,\ldots,x_p,y)$, subject to linear equality constraints that couple $x_1,\ldots,x_p,y$, where $p\ge 1$ is an integer. Our ADMM sequentially updates the primal variables in the order $x_1,\ldots,x_p,y$, followed by updating the dual … Read more