On Self-Regulated Swarms, Societal Memory, Speed and Dynamics

Wasps, bees, ants and termites all make effective use of their environment and resources by displaying collective “swarm” intelligence. Termite colonies – for instance – build nests with a complexity far beyond the comprehension of the individual termite, while ant colonies dynamically allocate labor to various vital tasks such as foraging or defense without any … Read more

An efficient conjugate direction method with orthogonalization for large-scale quadratic optimization problems

A new conjugate direction method is proposed, which is based on an orthogonalization procedure and does not make use of line searches for the conjugate vector set construction. This procedure prevents the set of conjugate vectors from degeneracy and eliminates high sensitivity to computation errors pertinent to methods of conjugate directions, resulting in an efficient … Read more

Societal Implicit Memory and his Speed on Tracking Extrema over Dynamic Environments using Self-Regulatory Swarms

In order to overcome difficult dynamic optimization and environment extrema tracking problems, we propose a Self-Regulated Swarm (SRS) algorithm which hybridizes the advantageous characteristics of Swarm Intelligence as the emergence of a societal environmental memory or cognitive map via collective pheromone laying in the landscape (properly balancing the exploration/exploitation nature of the search strategy), with … Read more

Trust-region interior-point method for large sparse l_1 optimization.

In this paper, we propose an interior-point method for large sparse l_1 optimization. After a short introduction, the complete algorithm is introduced and some implementation details are given. We prove that this algorithm is globally convergent under standard mild assumptions. Thus nonconvex problems can be solved successfully. The results of computational experiments given in this … Read more

Interior-Point Methods for Nonconvex Nonlinear Programming: Regularization and Warmstarts

In this paper, we investigate the use of an exact primal-dual penalty approach within the framework of an interior-point method for nonconvex nonlinear programming. This approach provides regularization and relaxation, which can aid in solving ill-behaved problems and in warmstarting the algorithm. We present details of our implementation within the LOQO algorithm and provide extensive … Read more

Primal interior-point method for large sparse minimax optimization.

In this paper, we propose an interior-point method for large sparse minimax optimization. After a short introduction, where various barrier terms are discussed, the complete algorithm is introduced and some implementation details are given. We prove that this algorithm is globally convergent under standard mild assumptions. Thus nonconvex problems can be solved successfully. The results … Read more

Sequential Subspace Optimization Method for Large-Scale Unconstrained Problems

We present the Sequential Subspace Optimization (SESOP) method for large scale smooth unconstrained problems. At each iteration we search for a minimum of the objective function over a subspace spanned by the current gradient and by directions of few previous steps. We also include into this subspace the direction from the starting point to the … Read more

Low Order-Value Optimization and Applications

Given r real functions F1 (x), . . . , Fr (x) and an integer p between 1 and r, the Low Order- Value Optimization problem (LOVO) consists of minimizing the sum of the functions that take the p smaller values. If (y1 , . . . , yr ) is a vector of data … Read more

On warm starts for interior methods

An appealing feature of interior methods for linear programming is that the number of iterations required to solve a problem tends to be relatively insensitive to the choice of initial point. This feature has the drawback that it is difficult to design interior methods that efficiently utilize information from an optimal solution to a “nearby” … Read more

Dynamic updates of the barrier parameter in primal-dual methods for nonlinear programming

We introduce a framework in which updating rules for the barrier parameter in primal-dual interior-point methods become dynamic. The original primal-dual system is augmented to incorporate explicitly an updating function. A Newton step for the augmented system gives a primal-dual Newton step and also a step in the barrier parameter. Based on local information and … Read more