Recursive Trust-Region Methods for Multilevel Nonlinear Optimization (Part I): Global Convergence and Complexity

A class of trust-region methods is presented for solving unconstrained nonlinear and possibly nonconvex discretized optimization problems, like those arising in systems governed by partial differential equations. The algorithms in this class make use of the discretization level as a mean of speeding up the computation of the step. This use is recursive, leading to … Read more

Optimization of A Fed-batch Fermentation Process Control Competition Problem Using NEOS

An optimal control solution to a fed-batch fermentation process, responding to a competition call, was developed using NEOS Server. Substantial improvement to the nominal performance achieved in the paper demonstrates the ability of the NEOS Server and the APPS algorithm. Citation Proceedings of Inst. of Mechanical Engineers , Part-I (UK). To appear. (Accepted May 2003). … Read more

RIOTS_95–a MATLAB Toolbox for Solving General Optimal Control Problems And Its Applications to Chemical Processes

RIOTS_95 is a group of programs and utilities, written mostly in C, Fortran and M-file scripts and designed as a toolbox for MATLAB, that provides an interactive environment for solving a very broad class of optimal control problems (OCP’s). RIOTS_95 comes pre-compiled for use with the Windows 95/98/2000 or Windows NT operating systems. The user’s … Read more

Model Problems for the Multigrid Optimization of Systems Governed by Differential Equations

We present a multigrid approach to the optimization of systems governed by differential equations. Such optimization problems have many applications, and are a broader class of problems than systems of equations. Using several model problems we give evidence (both theoretical and numerical) that a multigrid approach can often be successful in the setting of optimization. … Read more

A Remarkable Property of the Dynamic Optimization Extremals

A dynamic optimization continuous problem poses the question of what is the optimal magnitude of a choice variable, at each point of time, in a given interval. To tackle such problems, three major approaches are available: dynamic programming; the calculus of variations; and the powerful optimal control approach. At the core of optimal control theory … Read more

Fast iterative solution of saddle point problems in optimal control based on wavelets

In this paper, wavelet techniques are employed for the fast numerical solution of a control problem governed by an elliptic boundary value problem with boundary control. A quadratic cost functional involving natural norms of the state and the control is to be minimized. Firstly the constraint, the elliptic boundary value problem, is formulated in an … Read more