Exploiting Negative Curvature in Conjunction with Adaptive Sampling: Theoretical Results and a Practical Algorithm

In this paper, we propose algorithms that exploit negative curvature for solving noisy nonlinear nonconvex unconstrained optimization problems. We consider both deterministic and stochastic inexact settings, and develop two-step algorithms that combine directions of negative curvature and descent directions to update the iterates. Under reasonable assumptions, we prove second-order convergence results and derive complexity guarantees … Read more

Fast Unconstrained Optimization via Hessian Averaging and Adaptive Gradient Sampling Methods

\(\) We consider minimizing finite-sum and expectation objective functions via Hessian-averaging based subsampled Newton methods. These methods allow for gradient inexactness and have fixed per-iteration Hessian approximation costs. The recent work (Na et al. 2023) demonstrated that Hessian averaging can be utilized to achieve fast \(\mathcal{O}\left(\sqrt{\frac{\log k}{k}}\right)\) local superlinear convergence for strongly convex functions in … Read more

Local Convergence Analysis for Nonisolated Solutions to Derivative-Free Methods of Optimization

This paper provides a local convergence analysis for newly developed derivative-free methods in problems of smooth nonconvex optimization. We focus here on local convergence to local minimizers, which might be nonisolated and hence more challenging for convergence analysis. The main results provide efficient conditions for local convergence to arbitrary local minimizers under the fulfillment of … Read more

Black-box Optimization Algorithms for Regularized Least-squares Problems

We consider the problem of optimizing the sum of a smooth, nonconvex function for which derivatives are unavailable, and a convex, nonsmooth function with easy-to-evaluate proximal operator. Of particular focus is the case where the smooth part has a nonlinear least-squares structure. We adapt two existing approaches for derivative-free optimization of nonsmooth compositions of smooth … Read more

Globally Convergent Derivative-Free Methods in Nonconvex Optimization with and without Noise

This paper addresses the study of nonconvex derivative-free optimization problems, where only information of either smooth objective functions or their noisy approximations is available. General derivative-free methods are proposed for minimizing differentiable (not necessarily convex) functions with globally Lipschitz continuous gradients, where the accuracy of approximate gradients is interacting with stepsizes and exact gradient values. … Read more

Doubly stochastic primal dual splitting algorithm with variance reduction for saddle point problems

The structured saddle-point problem involving the infimal convolution in real Hilbert spaces finds applicability in many applied mathematics disciplines. For this purpose, we develop a stochastic primal-dual splitting algorithm with loopless variance-reduction for solving this generic problem. We first prove the weak almost sure convergence of the iterates. We then demonstrate that our algorithm achieves … Read more

Singular value half thresholding algorithm for lp regularized matrix optimization problems

In this paper, we study the low-rank matrix optimization problem, where the penalty term is the $\ell_p~(0<p<1)$ regularization. Inspired by the good performance of half thresholding function in sparse/low-rank recovery problems, we propose a singular value half thresholding (SVHT) algorithm to solve the $\ell_p$ regularized matrix optimization problem. The main iteration in SVHT algorithm makes … Read more

Near-optimal closed-loop method via Lyapunov damping for convex optimization

We introduce an autonomous system with closed-loop damping for first-order convex optimization. While, to this day, optimal rates of convergence are only achieved by non-autonomous methods via open-loop damping (e.g., Nesterov’s algorithm), we show that our system is the first one featuring a closed-loop damping while exhibiting a rate arbitrarily close to the optimal one. … Read more

Fixed point continuation algorithm with extrapolation for Schatten p-quasi-norm regularized matrix optimization problems

In this paper, we consider a general low-rank matrix optimization problem which is modeled by a general Schatten p-quasi-norm (${\rm 0<p<1}$) regularized matrix optimization. For this nonconvex nonsmooth and non-Lipschitz matrix optimization problem, based on the matrix p-thresholding operator, we first propose a fixed point continuation algorithm with extrapolation (FPCAe) for solving it. Secondly, we … Read more

An optimally fast objective-function-free minimization algorithm using random subspaces

Article Download View An optimally fast objective-function-free minimization algorithm using random subspaces