On Solving L-SR1 Trust-Region Subproblems

In this article, we consider solvers for large-scale trust-region subproblems when the quadratic model is defined by a limited-memory symmetric rank-one (L-SR1) quasi-Newton matrix. We propose a solver that exploits the compact representation of L-SR1 matrices. Our approach makes use of both an orthonormal basis for the eigenspace of the L-SR1 matrix and the Sherman- … Read more

On the steepest descent algorithm for quadratic functions

The steepest descent algorithm with exact line searches (Cauchy algorithm) is inefficient, generating oscillating step lengths and a sequence of points converging to the span of the eigenvectors associated with the extreme eigenvalues. The performance becomes very good if a short step is taken at every (say) 10 iterations. We show a new method for … Read more

A second-order globally convergent direct-search method and its worst-case complexity

Direct-search algorithms form one of the main classes of algorithms for smooth unconstrained derivative-free optimization, due to their simplicity and their well-established convergence results. They proceed by iteratively looking for improvement along some vectors or directions. In the presence of smoothness, first-order global convergence comes from the ability of the vectors to approximate the steepest … Read more

Global convergence rate analysis of unconstrained optimization methods based on probabilistic models

We present global convergence rates for a line-search method which is based on random first-order models and directions whose quality is ensured only with certain probability. We show that in terms of the order of the accuracy, the evaluation complexity of such a method is the same as its counterparts that use deterministic accurate models; … Read more

Stochastic Optimization using a Trust-Region Method and Random Models

In this paper, we propose and analyze a trust-region model-based algorithm for solving unconstrained stochastic optimization problems. Our framework utilizes random models of an objective function $f(x)$, obtained from stochastic observations of the function or its gradient. Our method also utilizes estimates of function values to gauge progress that is being made. The convergence analysis … Read more

A Nonmonotone Approach without Differentiability Test for Gradient Sampling Methods

Recently, optimization problems involving nonsmooth and locally Lipschitz functions have been subject of investigation, and an innovative method known as Gradient Sampling has gained attention. Although the method has shown good results for important real problems, some drawbacks still remain unexplored. This study suggests modifications to the gradient sampling class of methods in order to … Read more

On the equivalence of the method of conjugate gradients and quasi-Newton methods on quadratic problems

In this paper we state necessary and sufficient conditions for equivalence of the method of conjugate gradients and quasi-Newton methods on a quadratic problem. We show that the set of quasi-Newton schemes that generate parallel search directions to those of the method of conjugate gradients is strictly larger than the one-parameter Broyden family. In addition, … Read more

Trust-region methods without using derivatives: Worst case complexity and the non-smooth case

Trust-region methods are a broad class of methods for continuous optimization that found application in a variety of problems and contexts. In particular, they have been studied and applied for problems without using derivatives. The analysis of trust-region derivative-free methods has focused on global convergence, and they have been proved to generate a sequence of … Read more

Object-Parallel Infrastructure for Implementing First-Order Methods, with an Example Application to LASSO

We describe the design of a C++ vector-manipulation substrate that allows first-order optimization algorithms to be expressed in a concise and readable manner, yet still achieve high performance in parallel computing environments. We use standard object-oriented techniques of encapsulation and operator overloading, combined with a novel “symbolic temporaries” delayed-evaluation system that greatly reduces the overhead … Read more