A Stochastic Majorize-Minimize Subspace Algorithm for Online Penalized Least Squares Estimation

Stochastic approximation techniques play an important role in solving many problems encountered in machine learning or adaptive signal processing. In these contexts, the statistics of the data are often unknown a priori or their direct computation is too intensive, and they have thus to be estimated online from the observed signals. For batch optimization of … Read more

Backward Step Control for Global Newton-type Methods

We present and analyze a new damping approach called backward step control for the globalization of the convergence of Newton-type methods for the numerical solution of nonlinear root-finding problems. We provide and discuss reasonable assumptions that imply convergence of backward step control on the basis of generalized Newton paths in conjunction with a backward analysis … Read more

Cubic-regularization counterpart of a variable-norm trust-region method for unconstrained minimization

In a recent paper we introduced a trust-region method with variable norms for unconstrained minimization and we proved standard asymptotic convergence results. Here we will show that, with a simple modification with respect to the sufficient descent condition and replacing the trust-region approach with a suitable cubic regularization, the complexity of this method for finding … Read more

First and second order optimality conditions for piecewise smooth objective functions

Any piecewise smooth function that is specified by an evaluation procedures involving smooth elemental functions and piecewise linear functions like min and max can be represented in the so-called abs-normal form. By an extension of algorithmic, or automatic differentiation, one can then compute certain first and second order derivative vectors and matrices that represent a … Read more

A note on robust descent in differentiable optimization

In this note, we recall two solutions to alleviate the catastrophic cancellations that occur when comparing function values in descent algorithms. The automatic finite differencing approach (Dussault and Hamelin) was shown useful to trust region and line search variants. The main original contribution is to successfully adapt the line search strategy (Hager and Zhang) for … Read more

Evaluation complexity bounds for smooth constrained nonlinear optimization using scaled KKT conditions and high-order models

Evaluation complexity for convexly constrained optimization is considered and it is shown first that the complexity bound of $O(\epsilon^{-3/2})$ proved by Cartis, Gould and Toint (IMAJNA 32(4) 2012, pp.1662-1695) for computing an $\epsilon$-approximate first-order critical point can be obtained under significantly weaker assumptions. Moreover, the result is generalized to the case where high-order derivatives are … Read more

Improved Damped Quasi-Newton Methods for Unconstrained Optimization

Recently, Al-Baali (2014) has extended the damped-technique in the modified BFGS method of Powell (1978) for Lagrange constrained optimization functions to the Broyden family of quasi-Newton methods for unconstrained optimization. Appropriate choices for the damped-parameter, which maintain the global and superlinear con- vergence property of these methods on convex functions and correct the Hessian approximations … Read more

A Linear Scalarization Proximal Point Method for Quasiconvex Multiobjective Minimization

In this paper we propose a linear scalarization proximal point algorithm for solving arbitrary lower semicontinuous quasiconvex multiobjective minimization problems. Under some natural assumptions and using the condition that the proximal parameters are bounded we prove the convergence of the sequence generated by the algorithm and when the objective functions are continuous, we prove the … Read more

A Linear Scalarization Proximal Point Method for Quasiconvex Multiobjective Minimization

In this paper we propose a linear scalarization proximal point algorithm for solving arbitrary lower semicontinuous quasiconvex multiobjective minimization problems. Under some natural assumptions and using the condition that the proximal parameters are bounded we prove the convergence of the sequence generated by the algorithm and when the objective functions are continuous, we prove the … Read more