An efficient gradient method using the Yuan steplength

We propose a new gradient method for quadratic programming, named SDC, which alternates some SD iterates with some gradient iterates that use a constant steplength computed through the Yuan formula. The SDC method exploits the asymptotic spectral behaviour of the Yuan steplength to foster a selective elimination of the components of the gradient along the … Read more

Quasi-Newton updates with weighted secant equations

We provide a formula for variational quasi-Newton updates with multiple weighted secant equations. The derivation of the formula leads to a Sylvester equation in the correction matrix. Examples are given. CitationReport naXys-09-2013, Namur Centre for Complex Systems, Unibersity of Namur, Namur (Belgium)ArticleDownload View PDF

The divergence of the BFGS and the Gauss Newton Methods

We present examples of divergence for the BFGS and Gauss Newton methods. These examples have objective functions with bounded level sets and other properties concerning the examples published recently in this journal, like unit steps and convexity along the search lines. As these other examples, the iterates, function values and gradients in the new examples … Read more

The Euclidean distance degree of an algebraic variety

The nearest point map of a real algebraic variety with respect to Euclidean distance is an algebraic function. For instance, for varieties of low rank matrices, the Eckart-Young Theorem states that this map is given by the singular value decomposition. This article develops a theory of such nearest point maps from the perspective of computational … Read more

Algebraic rules for quadratic regularization of Newton’s method

In this work we propose a class of quasi-Newton methods to minimize a twice differentiable function with Lipschitz continuous Hessian. These methods are based on the quadratic regularization of Newton’s method, with algebraic explicit rules for computing the regularizing parameter. The convergence properties of this class of methods are analysed. We show that if the … Read more

Efficient tridiagonal preconditioner for the matrix-free truncated Newton method

In this report, we study an efficient tridiagonal preconditioner, based on numerical differentiation, applied to the matrix-free truncated Newton method for unconstrained optimization. It is proved that this preconditioner is positive definite for many practical problems. The efficiency of the resulting matrix-free truncated Newton method is demonstrated by results of extensive numerical experiments. CitationTechnical Report … Read more

An inexact and nonmonotone proximal method for smooth unconstrained minimization

An implementable proximal point algorithm is established for the smooth nonconvex unconstrained minimization problem. At each iteration, the algorithm minimizes approximately a general quadratic by a truncated strategy with step length control. The main contributions are: (i) a framework for updating the proximal parameter; (ii) inexact criteria for approximately solving the subproblems; (iii) a nonmonotone … Read more

An example of slow convergence for Newton’s method on a function with globally Lipschitz continuous Hessian

An example is presented where Newton’s method for unconstrained minimization is applied to find an $\epsilon$-approximate first-order critical point of a smooth function and takes a multiple of $\epsilon^{-2}$ iterations and function evaluations to terminate, which is as many as the steepest-descent method in its worst-case. The novel feature of the proposed example is that … Read more

A note on Legendre-Fenchel conjugate of the product of two positive-definite quadratic forms

The Legendre-Fenchel conjugate of the product of two positive-definite quadratic forms was posted as an open question in the field of nonlinear analysis and optimization by Hiriart-Urruty [`Question 11′ in {\it SIAM Review} 49, 255-273, (2007)]. Under a convex assumption on the function, it was answered by Zhao [SIAM J. Matrix Analysis $\&$ Applications, 31(4), … Read more

Worst-case evaluation complexity of non-monotone gradient-related algorithms for unconstrained optimization

The worst-case evaluation complexity of finding an approximate first-order critical point using gradient-related non-monotone methods for smooth nonconvex and unconstrained problems is investigated. The analysis covers a practical linesearch implementation of these popular methods, allowing for an unknown number of evaluations of the objective function (and its gradient) per iteration. It is shown that this … Read more