A Nonmonotone Approach without Differentiability Test for Gradient Sampling Methods

Recently, optimization problems involving nonsmooth and locally Lipschitz functions have been subject of investigation, and an innovative method known as Gradient Sampling has gained attention. Although the method has shown good results for important real problems, some drawbacks still remain unexplored. This study suggests modifications to the gradient sampling class of methods in order to … Read more

On the equivalence of the method of conjugate gradients and quasi-Newton methods on quadratic problems

In this paper we state necessary and sufficient conditions for equivalence of the method of conjugate gradients and quasi-Newton methods on a quadratic problem. We show that the set of quasi-Newton schemes that generate parallel search directions to those of the method of conjugate gradients is strictly larger than the one-parameter Broyden family. In addition, … Read more

Trust-region methods without using derivatives: Worst case complexity and the non-smooth case

Trust-region methods are a broad class of methods for continuous optimization that found application in a variety of problems and contexts. In particular, they have been studied and applied for problems without using derivatives. The analysis of trust-region derivative-free methods has focused on global convergence, and they have been proved to generate a sequence of … Read more

Object-Parallel Infrastructure for Implementing First-Order Methods, with an Example Application to LASSO

We describe the design of a C++ vector-manipulation substrate that allows first-order optimization algorithms to be expressed in a concise and readable manner, yet still achieve high performance in parallel computing environments. We use standard object-oriented techniques of encapsulation and operator overloading, combined with a novel “symbolic temporaries” delayed-evaluation system that greatly reduces the overhead … Read more

A Preconditioner for a Primal-Dual Newton Conjugate Gradients Method for Compressed Sensing Problems

In this paper we are concerned with the solution of Compressed Sensing (CS) problems where the signals to be recovered are sparse in coherent and redundant dictionaries. We extend a primal-dual Newton Conjugate Gradients (pdNCG) method for CS problems. We provide an inexpensive and provably effective preconditioning technique for linear systems using pdNCG. Numerical results … Read more

Global convergence of the Heavy-ball method for convex optimization

This paper establishes global convergence and provides global bounds of the convergence rate of the Heavy-ball method for convex optimization problems. When the objective function has Lipschitz-continuous gradient, we show that the Cesa ́ro average of the iterates converges to the optimum at a rate of $O(1/k)$ where k is the number of iterations. When … Read more

Worst-case evaluation complexity of regularization methods for smooth unconstrained optimization using Hölder continuous gradients

The worst-case behaviour of a general class of regularization algorithms is considered in the case where only objective function values and associated gradient vectors are evaluated. Upper bounds are derived on the number of such evaluations that are needed for the algorithm to produce an approximate first-order critical point whose accuracy is within a user-defined … Read more

Simple examples for the failure of Newton’s method with line search for strictly convex minimization

In this paper two simple examples of a twice continuously differentiable strictly convex function $f$ are presented for which Newton’s method with line search converges to a point where the gradient of $f$ is not zero. The first example uses a line search based on the Wolfe conditions. For the second example, some strictly convex … Read more

Handling Nonpositive Curvature in a Limited Memory Steepest Descent Method

We propose a limited memory steepest descent (LMSD) method for solving unconstrained optimization problems. As a steepest descent method, the step computation in each iteration requires the evaluation of a gradient of the objective function and the calculation of a scalar step size only. When employed to solve certain convex problems, our method reduces to … Read more

A Trust Region Algorithm with a Worst-Case Iteration Complexity of ${\cal O}(\epsilon^{-3/2})$ for Nonconvex Optimization

We propose a trust region algorithm for solving nonconvex smooth optimization problems. For any $\bar\epsilon \in (0,\infty)$, the algorithm requires at most $\mathcal{O}(\epsilon^{-3/2})$ iterations, function evaluations, and derivative evaluations to drive the norm of the gradient of the objective function below any $\epsilon \in (0,\bar\epsilon]$. This improves upon the $\mathcal{O}(\epsilon^{-2})$ bound known to hold for … Read more