Coordinate descent algorithms

Coordinate descent algorithms solve optimization problems by successively performing approximate minimization along coordinate directions or coordinate hyperplanes. They have been used in applications for many years, and their popularity continues to grow because of their usefulness in data analysis, machine learning, and other areas of current interest. This paper describes the fundamentals of the coordinate … Read more

PSMG-A Parallel Structured Model Generator for Mathematical Programming

In this paper, we present PSMG–Parallel Structured Model Generator–an efficient parallel implementation of a model generator for the structure conveying modelling language (SML[4]). Unlike the earlier proof-of-concept implementation presented with SML, PSMG does not depend on AMPL. The main purposes of PSMG are: to provide an easy to use framework for modelling and generating large … Read more

Interior-point solver for convex separable block-angular problems

Constraints matrices with block-angular structures are pervasive in Optimization. Interior-point methods have shown to be competitive for these structured problems by exploiting the linear algebra. One of these approaches solved the normal equations using sparse Cholesky factorizations for the block constraints, and a preconditioned conjugate gradient (PCG) for the linking constraints. The preconditioner is based … Read more

A Parallel Line Search Subspace Correction Method for Composite Convex Optimization

In this paper, we investigate a parallel subspace correction framework for composite convex optimization. The variables are first divided into a few blocks based on certain rules. At each iteration, the algorithms solve a suitable subproblem on each block simultaneously, construct a search direction by combining their solutions on all blocks, then identify a new … Read more

Scenario-Tree Decomposition: Bounds for Multistage Stochastic Mixed-Integer Programs

Multistage stochastic mixed-integer programming is a powerful modeling paradigm appropriate for many problems involving a sequence of discrete decisions under uncertainty; however, they are difficult to solve without exploiting special structures. We present scenario-tree decomposition to establish bounds for unstructured multistage stochastic mixed-integer programs. Our method decomposes the scenario tree into a number of smaller … Read more

RBFOpt: an open-source library for black-box optimization with costly function evaluations

We consider the problem of optimizing an unknown function given as an oracle over a mixed-integer box-constrained set. We assume that the oracle is expensive to evaluate, so that estimating partial derivatives by finite differences is impractical. In the literature, this is typically called a black-box optimization problem with costly evaluation. This paper describes the … Read more

A scalable bounding method for multi-stage stochastic integer programs

Many dynamic decision problems involving uncertainty can be appropriately modeled as multi-stage stochastic programs. However, most practical instances are so large and/or complex that it is impossible to solve them on a single computer, especially due to memory limitations. Extending the work of Sandikci et al. (2013) on two-stage stochastic mixed-integer-programs (SMIPs), this paper develops … Read more

A Non-Parametric Structural Hybrid Modeling Approach for Electricity Prices

We develop a stochastic model of zonal/regional electricity prices, designed to reflect information in fuel forward curves and aggregated capacity and load as well as zonal or regional price spreads. We use a nonparametric model of the supply stack that captures heat rates and fuel prices for all generators in the market operator territory, combined … Read more

A Parallel Local Search Framework for the Fixed-Charge Multicommodity Network Flow Problem

We present a parallel local search approach for obtaining high quality solutions to the Fixed Charge Multi-commodity Network Flow problem (FCMNF). The approach proceeds by improving a given feasible solution by solving restricted instances of the problem where flows of certain commodities are fixed to those in the solution while the other commodities are locally … Read more

How Difficult is Nonlinear Optimization? A Practical Solver Tuning Approach, with Illustrative Results

Nonlinear optimization (NLO) per definitionem covers a vast range of problems, from trivial to practically intractable. For this reason, it is impossible to offer “guaranteed” advice to NLO software users. This fact becomes especially obvious, when facing unusually hard and/or previously unexplored NLO challenges. In the present study we offer some related practical observations, propose … Read more