MINRES-QLP: a Krylov subspace method for indefinite or singular symmetric systems

CG, SYMMLQ, and MINRES are Krylov subspace methods for solving symmetric systems of linear equations. When these methods are applied to an incompatible system (that is, a singular symmetric least-squares problem), CG could break down and SYMMLQ’s solution could explode, while MINRES would give a least-squares solution but not necessarily the minimum-length (pseudoinverse) solution. This … Read more

Exploiting run time distributions to compare sequential and parallel stochastic local search algorithms

Run time distributions or time-to-target plots are very useful tools to characterize the running times of stochastic algorithms for combinatorial optimization. We further explore run time distributions and describe a new tool to compare two algorithms based on stochastic local search. For the case where the running times of both algorithms fit exponential distributions, we … Read more

Estimating Computational Noise

Computational noise in deterministic simulations is as ill-defined a concept as can be found in scientific computing. When coupled with adaptive strategies, the effects of finite precision destroy smoothness of the simulation output and complicate subsequent analysis. Following the work of Hamming on roundoff errors, we present a new algorithm, ECnoise, for quantifying the noise … Read more

Python Optimization Modeling Objects (Pyomo)

We describe Pyomo, an open source tool for modeling optimization applications in Python. Pyomo can be used to de fine symbolic problems, create concrete problem instances, and solve these instances with standard solvers. Pyomo provides a capability that is commonly associated with algebraic modeling languages such as AMPL, AIMMS, and GAMS, but Pyomo’s modeling objects are … Read more

A Collection of 1,300 Dynamical Systems for Testing Data Fitting, Optimal Control, Experimental Design, Identification, Simulation or Similar Software – User’s Guide

We describe a collection of test problems which have been used to develop and test data fitting software for identifying parameters in explicit model functions, dynamical systems of equations, Laplace transformations, systems of ordinary differential equations, differential algebraic equations, or systems of one-dimensional time-dependent partial differential equations with or without algebraic equations. The test cases … Read more

MathOptimizer: A nonlinear optimization package for Mathematica users

Mathematica is an advanced software system that enables symbolic computing, numerics, program code development, model visualization and professional documentation in a unified framework. Our MathOptimizer software package serves to solve global and local optimization models developed using Mathematica. We introduce MathOptimizer’s key features and discuss its usage options that support a range of operational modes. … Read more

An Updated Set of 306 Test Problems for Nonlinear Programming with Validated Optimal Solutions

The availability of nonlinear programming test problems is extremely important to test optimization codes or to develop new algorithms. We describe the usage of the Fortran subroutines for all 306 test problems of two previous collections of the author, see Hock and Schittkowski (1981) and Schittkowski (1987). For each test example, we provide an optimal … Read more

Data Fitting and Experimental Design in Dynamical Systems with EASY-FIT ModelDesign

EASY-FIT is an interactive software system to identify parameters and compute optimal designs in explicit model functions, steady-state systems, Laplace transformations, systems of ordinary differential equations, differential algebraic equations, or systems of one-dimensional time dependent partial differential equations with or without algebraic equations. Proceeding from given experimental data, i.e. observation times and measurements, the minimum … Read more

PARNES: A rapidly convergent algorithm for accurate recovery of sparse and approximately sparse signals

In this article we propose an algorithm, NESTA-LASSO, for the LASSO problem (i.e., an underdetermined linear least-squares problem with a one-norm constraint on the solution) that exhibits linear convergence under the restricted isometry property (RIP) and some other reasonable assumptions. Inspired by the state-of-the-art sparse recovery method, NESTA, we rely on an accelerated proximal gradient … Read more

Stopping rules and backward error analysis for bound-constrained optimization

Termination criteria for the iterative solution of bound-constrained optimization problems are examined in the light of backward error analysis. It is shown that the problem of determining a suitable perturbation on the problem’s data corresponding to the definition of the backward error is analytically solvable under mild assumptions. Moreover, a link between existing termination criteria … Read more