An Optimal Solution is Not Enough: Alternative Solutions and Optimal Power Systems

Power systems modeling and planning has long leveraged mathematical programming for its ability to provide optimality and feasibility guarantees. One feature that has been recognized in the optimization literature since the 1970s is the existence and meaning of multiple exact optimal and near-optimal solutions, which we call alternative solutions. In power systems modeling, the use … Read more

Extracting Alternative Solutions from Benders Decomposition

We show how to extract alternative solutions for optimization problems solved by Benders Decom- position. In practice, alternative solutions provide useful insights for complex applications; some solvers do support generation of alternative solutions but none appear to support such generation when using Benders Decomposition. We propose a new post-processing method that extracts multiple optimal and … Read more

Shortest Path Network Interdiction with Asymmetric Uncertainty

This paper considers an extension of the shortest path network interdiction problem that incorporates robustness to account for parameter uncertainty. The shortest path interdiction problem is a game of two players with conflicting agendas and capabilities: an evader, who traverses the arcs of a network from a source node to a sink node using the … Read more

PEBBL: An Object-Oriented Framework for Scalable Parallel Branch and Bound

PEBBL is a C++ class library implementing the underlying operations needed to support a wide variety of branch-and-bound algorithms in a message-passing parallel computing environment. Deriving application-speci c classes from PEBBL, one may create parallel branch-and-bound applications through a process focused on the unique aspects of the application, while relying on PEBBL for generic aspects of … Read more

PySP: Modeling and Solving Stochastic Programs in Python

Although stochastic programming is a powerful tool for modeling decision-making under uncertainty, various impediments have historically prevented its wide-spread use. One key factor involves the ability of non-specialists to easily express stochastic programming problems as extensions of deterministic models, which are often formulated first. A second key factor relates to the difficulty of solving stochastic … Read more

Python Optimization Modeling Objects (Pyomo)

We describe Pyomo, an open source tool for modeling optimization applications in Python. Pyomo can be used to de fine symbolic problems, create concrete problem instances, and solve these instances with standard solvers. Pyomo provides a capability that is commonly associated with algebraic modeling languages such as AMPL, AIMMS, and GAMS, but Pyomo’s modeling objects are … Read more

Python Optimization Modeling Objects (Pyomo)

We describe Pyomo, an open-source tool for modeling optimization applications in Python. Pyomo can be used to define abstract problems, create concrete problem instances, and solve these instances with standard solvers. Pyomo provides a capability that is commonly associated with algebraic modeling languages like AMPL and GAMS. Pyomo leverages the capabilities of the Coopr software, … Read more