Parallelizable Algorithms for Optimization Problems with Orthogonality Constraints

To construct a parallel approach for solving optimization problems with orthogonality constraints is usually regarded as an extremely difficult mission, due to the low scalability of the orthonormalization procedure. However, such demand is particularly huge in some application areas such as materials computation. In this paper, we propose a proximal linearized augmented Lagrangian algorithm (PLAM) … Read more

Rapid prototyping of parallel primal heuristics for domain specific MIPs: Application to maritime inventory routing

Parallel Alternating Criteria Search (PACS) relies on the combination of computer parallelism and Large Neighborhood Searches to attempt to deliver high quality solutions to any generic Mixed-Integer Program (MIP) quickly. While general-purpose primal heuristics are widely used due to their universal application, they are usually outperformed by domain-specific heuristics when optimizing a particular problem class. … Read more

Decentralized Algorithms for Distributed Integer Programming Problems with a Coupling Cardinality Constraint

We consider a multi-player optimization where each player has her own optimization problem and the individual problems are connected by a cardinality constraint on their shared resources. We give distributed algorithms that allow each player to solve their own optimization problem and still achieve a global optimization solution for problems that possess a concavity property. … Read more

Selection of variables in parallel space decomposition for the mesh adaptive direct search algorithm

The parallel space decomposition of the Mesh Adaptive Direct Search algorithm (PSDMADS proposed in 2008) is an asynchronous parallel method for constrained derivative-free optimization with large number of variables. It uses a simple generic strategy to decompose a problem into smaller dimension subproblems. The present work explores new strategies for selecting subset of variables defining … Read more

A Distributed Quasi-Newton Algorithm for Empirical Risk Minimization with Nonsmooth Regularization

We propose a communication- and computation-efficient distributed optimization algorithm using second-order information for solving ERM problems with a nonsmooth regularization term. Current second-order and quasi-Newton methods for this problem either do not work well in the distributed setting or work only for specific regularizers. Our algorithm uses successive quadratic approximations, and we describe how to … Read more

An Accelerated Communication-Efficient Primal-Dual Optimization Framework for Structured Machine Learning

Distributed optimization algorithms are essential for training machine learning models on very large-scale datasets. However, they often suffer from communication bottlenecks. Confronting this issue, a communication-efficient primal-dual coordinate ascent framework (CoCoA) and its improved variant CoCoA+ have been proposed, achieving a convergence rate of $\mathcal{O}(1/t)$ for solving empirical risk minimization problems with Lipschitz continuous losses. … Read more

DSCOVR: Randomized Primal-Dual Block Coordinate Algorithms for Asynchronous Distributed Optimization

Machine learning with big data often involves large optimization models. For distributed optimization over a cluster of machines, frequent communication and synchronization of all model parameters (optimization variables) can be very costly. A promising solution is to use parameter servers to store different subsets of the model parameters, and update them asynchronously at different machines … Read more

Parallel Solvers for Mixed Integer Linear Optimization

In this article, we provide an overview of the current state of the art with respect to solution of mixed integer linear optimization problems (MILPS) in parallel. Sequential algorithms for solving MILPs have improved substantially in the last two decades and commercial MILP solvers are now considered effective off-the-shelf tools for optimization. Although concerted development … Read more

FiberSCIP – A shared memory parallelization of SCIP

Recently, parallel computing environments have become significantly popular. In order to obtain the benefit of using parallel computing environments, we have to deploy our programs for these effectively. This paper focuses on a parallelization of SCIP (Solving Constraint Integer Programs), which is a MIP solver and constraint integer programming framework available in source code. There … Read more

Symmetric ADMM with Positive-Indefinite Proximal Regularization for Linearly Constrained Convex Optimization

The proximal ADMM which adds proximal regularizations to ADMM’s subproblems is a popular and useful method for linearly constrained separable convex problems, especially its linearized case. A well-known requirement on guaranteeing the convergence of the method in the literature is that the proximal regularization must be positive semidefinite. Recently it was shown by He et … Read more