Interval Scheduling with Economies of Scale

Motivated by applications in cloud computing, we study interval scheduling problems exhibiting economies of scale. An instance is given by a set of jobs, each with start time, end time, and a function representing the cost of scheduling a subset of jobs on the same machine. Specifically, we focus on the max-weight function and non-negative, … Read more

Approximate Dynamic Programming for Crowd-shipping with In-store Customers

Crowd-shipping has gained significant attention as a last-mile delivery option over the recent years. In this study, we propose a variant of dynamic crowd-shipping model with in-store customers as crowd-shippers to deliver online orders within few hours. We formulate the problem as a Markov decision process and develop an approximate dynamic programming (ADP) policy using … Read more

Interpretable Policies and the Price of Interpretability in Hypertension Treatment Planning

Problem definition: Effective hypertension management is critical to reducing consequences of atherosclerotic cardiovascular disease, a leading cause of death in the United States. Clinical guidelines for hypertension can be enhanced using decision-analytic approaches, capable of capturing many complexities in treatment planning. However, model-generated recommendations may be uninterpretable/unintuitive, limiting their acceptability in practice. We address this … Read more

Dual SDDP for risk-averse multistage stochastic programs

Risk-averse multistage stochastic programs appear in multiple areas and are challenging to solve. Stochastic Dual Dynamic Programming (SDDP) is a well-known tool to address such problems under time-independence assumptions. We show how to derive a dual formulation for these problems and apply an SDDP algorithm, leading to converging and deterministic upper bounds for risk-averse problems. … Read more

What is the optimal cutoff surface for ore bodies with more than one mineral?

In mine planning problems, cutoff grade optimization defines a threshold at every time period such that material above this value is processed, and the rest is considered waste. In orebodies with multiple minerals, which occur in practice, the natural extension is to consider a cutoff surface. We show that in two dimensions the optimal solution … Read more

Batch Learning in Stochastic Dual Dynamic Programming

We consider the stochastic dual dynamic programming (SDDP) algorithm, which is a widely employed algorithm applied to multistage stochastic programming, and propose a variant using batch learning, a technique used with success in the reinforcement learning framework. We cast SDDP as a type of Q-learning algorithm and describe its application in both risk neutral and … Read more

Algorithms for the Clique Problem with Multiple-Choice Constraints under a Series-Parallel Dependency Graph

The clique problem with multiple-choice constraints (CPMC), i.e. the problem of finding a k-clique in a k-partite graph with known partition, occurs as a substructure in many real-world applications, in particular scheduling and railway timetabling. Although CPMC is NP-complete in general, it is known to be solvable in polynomial time when the so-called dependency graph … Read more

Exact algorithms for the 0-1 Time-bomb Knapsack Problem

We consider a stochastic version of the 0–1 Knapsack Problem in which, in addition to profit and weight, each item is associated with a probability of exploding and destroying all the contents of the knapsack. The objective is to maximize the expected profit of the selected items. The resulting problem, denoted as 0–1 Time-Bomb Knapsack … Read more

Optimal Hospital Care Scheduling During the SARS-CoV-2 Pandemic

The COVID-19 pandemic has seen dramatic demand surges for hospital care that have placed a severe strain on health systems worldwide. As a result, policy makers are faced with the challenge of managing scarce hospital capacity so as to reduce the backlog of non-COVID patients whilst maintaining the ability to respond to any potential future … Read more

Optimizing Active Surveillance for Prostate Cancer Using Partially Observable Markov Decision Processes

We describe a finite-horizon partially observable Markov decision process (POMDP) approach to optimize decisions about whether and when to perform biopsies for patients on active surveillance for prostate cancer. The objective is to minimize a weighted combination of two criteria, the number of biopsies to conduct over a patient’s lifetime and the delay in detecting … Read more