On the shortest path game

In this work we address a game theoretic variant of the shortest path problem, in which two decision makers (agents/players) move together along the edges of a graph from a given starting vertex to a given destination. The two players take turns in deciding in each vertex which edge to traverse next. The decider in … Read more

Scheduling the Tasks of Two Agents with a Central Selection Mechanism

We address a class of deterministic scheduling problems in which two agents compete for the usage of a single machine. The agents have their own objective functions and submit in each round an arbitrary, unprocessed task from their buffer for possible selection. In each round the smaller of the two submitted tasks is chosen and … Read more

Computation of Stochastic Nash Equilibrium via Variable Sample Distributed Methods

In this paper, we propose a variable sample distributed algorithm for the computation of stochastic Nash equilibrium in which the objective functions are replaced, at each iteration, by sample average approximations. We investigate the contraction mapping properties of the variable sample distributed algorithm and show that the accuracy of estimators yielded in the algorithms to … Read more

Dynamic Cost Allocation for Economic Lot Sizing Games

We consider a cooperative game defined by an economic lot sizing problem with concave ordering costs over a finite time horizon, in which each player faces demand for a single product in each period and coalitions can pool orders. We show how to compute a dynamic cost allocation in the strong sequential core of this … Read more

Dynamic Linear Programming Games with Risk-Averse Players

Motivated by situations in which independent agents, or players, wish to cooperate in some uncertain endeavor over time, we study dynamic linear programming games, which generalize classical linear production games to multi-period settings under uncertainty. We specifically consider that players may have risk-averse attitudes towards uncertainty, and model this risk aversion using coherent conditional risk … Read more

Existence of Competitive Equilibrium in Piecewise Linear and Concave Exchange Economies and the non-symmetric Nash Bargaining Solution

In this paper we show that for concave piecewise linear exchange economies every competitive equilibrium satisfies the property that the competitive allocation is a non-symmetric Nash bargaining solution with weights being the initial income of individual agents evaluated at the equilibrium price vector. We prove the existence of competitive equilibrium for concave piecewise linear exchange … Read more

Scheduling of Two Agents Task Chains with a Central Selection Mechanism

In this paper we address a deterministic scheduling problem in which two agents compete for the usage of a single machine. Each agent decides on a fixed order to submit its tasks to an external coordination subject, who sequences them according to a known priority rule. We consider the problem from different perspectives. First, we … Read more

A game-theoretic approach to computation offloading in mobile cloud computing

We consider a three-tier architecture for mobile and pervasive computing scenarios, consisting of a local tier of mobile nodes, a middle tier (cloudlets) of nearby computing nodes, typically located at the mobile nodes access points but characterized by a limited amount of resources, and a remote tier of distant cloud servers, which have practically infinite … Read more

Stochastic linear programming games with concave preferences

We study stochastic linear programming games: a class of stochastic cooperative games whose payoffs under any realization of uncertainty are determined by a specially structured linear program. These games can model a variety of settings, including inventory centralization and cooperative network fortification. We focus on the core of these games under an allocation scheme that … Read more

Nonlinear Equilibrium for optimal resource allocation

We consider Nonlinear Equilibrium (NE) for optimal allocation of limited resources. The NE is a generalization of the Walras-Wald equilibrium, which is equivalent to J. Nash equilibrium in an n-person concave game. Finding NE is equivalent to solving a variational inequality (VI) with a monotone and smooth operator on $\Omega = \Re_+^n\cross\Re_+^m$. The projection on … Read more