A Parallel Evolution Strategy for an Earth Imaging Problem in Geophysics

In this paper we propose a new way to compute a warm starting point for a challenging global optimization problem related to Earth imaging in geophysics. The warm start consists of a velocity model that approximately solves a full-waveform inverse problem at low frequency. Our motivation arises from the availability of massively parallel computing platforms … Read more

Distributed Optimization Methods for Large Scale Optimal Control

This thesis aims to develop and implement both nonlinear and linear distributed optimization methods that are applicable, but not restricted to the optimal control of distributed systems. Such systems are typically large scale, thus the well-established centralized solution strategies may be computationally overly expensive or impossible and the application of alternative control algorithms becomes necessary. … Read more

Efficient upper and lower bounds for global mixed-integer optimal control

We present a control problem for an electrical vehicle. Its motor can be operated in two discrete modes, leading either to acceleration and energy consumption, or to a recharging of the battery. Mathematically, this leads to a mixed-integer optimal control problem (MIOCP) with a discrete feasible set for the controls taking into account the electrical … Read more

Monte Carlo Sampling-Based Methods for Stochastic Optimization

This paper surveys the use of Monte Carlo sampling-based methods for stochastic optimization problems. Such methods are required when—as it often happens in practice—the model involves quantities such as expectations and probabilities that cannot be evaluated exactly. While estimation procedures via sampling are well studied in statistics, the use of such methods in an optimization … Read more

Simulation Optimization for the Stochastic Economic Lot Scheduling Problem with Sequence-Dependent Setup Times

We consider the stochastic economic lot scheduling problem (SELSP) with lost sales and random demand, where switching between products is subject to sequence-dependent setup times. We propose a solution based on simulation optimization using an iterative two-step procedure which combines global policy search with local search heuristics for the traveling salesman sequencing subproblem. To optimize … Read more

Do You Trust Derivatives or Differences?

We analyze the relationship between the noise level of a function and the accuracy and reliability of derivatives and difference estimates. We derive and empirically validate measures of quality for both derivatives and difference estimates. Using these measures, we quantify the accuracy of derivatives and differences in terms of the noise level of the function. … Read more

Simulation Optimization for the Stochastic Economic Lot Scheduling Problem

We study simulation optimization methods for the stochastic economic lot scheduling problem. In contrast to prior research, we focus on methods that treat this problem as a black box. Based on a large-scale numerical study, we compare approximate dynamic programming with a global search for parameters of simple control policies. We propose two value function … Read more

Global optimization of expensive black box problems with a known lower bound

In this paper we propose an algorithm for the global optimization of computationally expensive black–box functions. For this class of problems, no information, like e.g. the gradient, can be obtained and function evaluation is highly expensive. In many applications, however, a lower bound on the objective function is known; in this situation we derive a … Read more

A surrogate management framework using rigorous trust-regions steps

Surrogate models and heuristics are frequently used in the optimization engineering community as convenient approaches to deal with functions for which evaluations are expensive or noisy, or lack convexity. These methodologies do not typically guarantee any type of convergence under reasonable assumptions and frequently render slow convergence. In this paper we will show how to … Read more

A surrogate management framework using rigorous trust-regions steps

Surrogate models and heuristics are frequently used in the optimization engineering community as convenient approaches to deal with functions for which evaluations are expensive or noisy, or lack convexity. These methodologies do not typically guarantee any type of convergence under reasonable assumptions and frequently render slow convergence. In this paper we will show how to … Read more