Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization

Decision rules provide a flexible toolbox for solving the computationally demanding, multistage adaptive optimization problems. There is a plethora of real-valued decision rules that are highly scalable and achieve good quality solutions. On the other hand, existing binary decision rule structures tend to produce good quality solutions at the expense of limited scalability, and are … Read more

Robust risk adjustment in health insurance

Risk adjustment is used to calibrate payments to health plans based on the relative health status of insured populations and helps keep the health insurance market competitive. Current risk adjustment models use parameter estimates obtained via regression and are thus subject to estimation error. This paper discusses the impact of parameter uncertainty on risk scoring, … Read more

Robust Investment Management with Uncertainty in Fund Managers’ Asset Allocation

We consider a problem where an investment manager must allocate an available budget among a set of fund managers, whose asset allocations are not precisely known to the investment manager. In this paper, we propose a robust framework that takes into account the uncertainty stemming from the fund managers’ allocation, as well as the more … Read more

A Lagrangean Decomposition Approach for Robust Combinatorial Optimization

We address robust versions of combinatorial optimization problems, specializing on the discrete scenario case and the uncorrelated ellipsoidal uncertainty case. We present a branch and bound-algorithm for the min-max variant of these problems which uses lower bounds obtained from Lagrangean decomposition, allowing to separate the uncertainty aspect in the objective function from the combinatorial structure … Read more

Power-Capacity and Ramp-Capability Reserves for Wind Integration in Power-Based UC

This paper proposes a power-based network-constrained unit commitment (UC) model as an alternative to the traditional deterministic UCs to deal with wind generation uncertainty. The formulation draws a clear distinction between power-capacity and ramp-capability reserves to deal with wind production uncertainty. These power and ramp requirements can be obtained from wind forecast information. The model … Read more

Robust optimization criteria: state-of-the-art and new issues

Uncertain parameters appear in many optimization problems raised by real-world applications. To handle such problems, several approaches to model uncertainty are available, such as stochastic programming and robust optimization. This study is focused on robust optimization, in particular, the criteria to select and determine a robust solution. We provide an overview on robust optimization criteria … Read more

Robust newsvendor problem with autoregressive demand

This paper explores the classic single-item newsvendor problem under a novel setting which combines temporal dependence and tractable robust optimization. First, the demand is modeled as a time series which follows an autoregressive process AR(p), p>= 1. Second, a robust approach to maximize the worst-case revenue is proposed: a robust distribution-free autoregressive forecasting method, which … Read more

Robust Growth-Optimal Portfolios

The growth-optimal portfolio is designed to have maximum expected log-return over the next rebalancing period. Thus, it can be computed with relative ease by solving a static optimization problem. The growth-optimal portfolio has sparked fascination among finance professionals and researchers because it can be shown to outperform any other portfolio with probability 1 in the … Read more

Computationally tractable counterparts of distributionally robust constraints on risk measures

In optimization problems appearing in fields such as economics, finance, or engineering, it is often important that a risk measure of a decision-dependent random variable stays below a prescribed level. At the same time, the underlying probability distribution determining the risk measure’s value is typically known only up to a certain degree and the constraint … Read more

Distributionally Robust Discrete Optimization with Entropic Value-at-Risk

We study the discrete optimization problem under the distributionally robust framework. We optimize the Entropic Value-at-Risk, which is a coherent risk measure and is also known as Bernstein approximation for the chance constraint. We propose an efficient approximation algorithm to resolve the problem via solving a sequence of nominal problems. The computational results show that … Read more