Robust Stable Payoff Distribution in Stochastic Cooperative Games

Cooperative games with transferable utilities belong to a branch of game theory where groups of players can enter into binding agreements and form coalitions in order to jointly achieve some objectives. In a cooperative setting, one of the most important questions to address is how to establish a payoff distribution among the players in such … Read more

The Multi-Band Robust Knapsack Problem — A Dynamic Programming Approach —

In this paper, we consider the multi-band robust knapsack problem which generalizes the Γ-robust knapsack problem by subdividing the single deviation band into several smaller bands. We state a compact ILP formulation and develop two dynamic programming algorithms based on the presented model where the first has a complexity linear in the number of items … Read more

Polyhedral Approximation of Ellipsoidal Uncertainty Sets via Extended Formulations – a computational case study –

Robust optimization is an important technique to immunize optimization problems against data uncertainty. In the case of a linear program and an ellipsoidal uncertainty set, the robust counterpart turns into a second-order cone program. In this work, we investigate the efficiency of linearizing the second-order cone constraints of the latter. This is done using the … Read more

Confidence Levels for CVaR Risk Measures and Minimax Limits

Conditional value at risk (CVaR) has been widely used as a risk measure in finance. When the confidence level of CVaR is set close to 1, the CVaR risk measure approximates the extreme (worst scenario) risk measure. In this paper, we present a quantitative analysis of the relationship between the two risk measures and its … Read more

Adjustable robust optimization with decision rules based on inexact revealed data

Adjustable robust optimization (ARO) is a technique to solve dynamic (multistage) optimization problems. In ARO, the decision in each stage is a function of the information accumulated from the previous periods on the values of the uncertain parameters. This information, however, is often inaccurate; there is much evidence in the information management literature that even … Read more

A Robust Additive Multiattribute Preference Model using a Nonparametric Shape-Preserving Perturbation

This paper develops a multiattribute preference ranking rule in the context of utility robustness. A nonparametric perturbation of a given additive reference utility function is specified to solve the problem of ambiguity and inconsistency in utility assessments, while preserving the additive structure and the decision maker’s risk preference under each criterion. A concept of robust … Read more

Robust optimization based self scheduling of hydro-thermal Genco in smart grids

This paper proposes a robust optimization model for optimal self scheduling of a hydro-thermal generating company. The proposed model is suitable for price taker Gencos which seeks the optimal schedule of its thermal and hydro generating units for a given operating horizon. The uncertainties of electricity prices are modeled using robust optimization approach to make … Read more

An Improvised Approach to Robustness in Linear Optimization

We treat uncertain linear programming problems by utilizing the notion of weighted analytic centers and notions from the area of multi-criteria decision making. In addition to many practical advantages, due to the flexibility of our approach, we are able to prove that the robust optimal solutions generated by our algorithms are at least as desirable … Read more

Lagrangean Decomposition for Mean-Variance Combinatorial Optimization

We address robust versions of combinatorial optimization problems, focusing on the uncorrelated ellipsoidal uncertainty case, which corresponds to so-called mean-variance optimization. We present a branch and bound-algorithm for such problems that uses lower bounds obtained from Lagrangean decomposition. This approach allows to separate the uncertainty aspect in the objective function from the combinatorial structure of … Read more

Polynomial time algorithms for the Minimax Regret Uncapacitated Lot Sizing Model

We study the Minimax Regret Uncapacitated Lot Sizing (MRULS) model, where the production cost function and the demand are subject to uncertainty. We propose a polynomial time algorithm which solves the MRULS model in O(n^6) time. We improve this running time to O(n^5) when only the demand is uncertain, and to O(n^4) when only the … Read more