Semi-Online Scheduling on Two Uniform Machines with Known Optimum, Part II: Tight Upper Bounds

We consider a semi-online version of the problem of scheduling a sequence of jobs of different lengths on two uniform machines with given speeds $1$ and $s$. Jobs are revealed one by one (the assignment of a job has to be done before the next job is revealed), and the objective is to minimize the … Read more

Dominance in Pricing Problems with Stochasticity

Sequencing activities over time is a fundamental optimization problem. The problem can be modeled using a directed network in which activities are represented by nodes and pairs of activities that can be performed consecutively are represented by arcs. A sequence of activities then corresponds to a path in the directed network, and an optimal sequence … Read more

Diffusion Methods for Classification with Pairwise Relationships

We define two algorithms for propagating information in classification problems with pairwise relationships. The algorithms involve contraction maps and are related to non-linear diffusion and random walks on graphs. The approach is also related to message passing and mean field methods. The algorithms we describe are guaranteed to converge on graphs with arbitrary topology. Moreover … Read more

On the Convergence of Multi-Block Alternating Direction Method of Multipliers and Block Coordinate Descent Method

The paper answers several open questions of the alternating direction method of multipliers (ADMM) and the block coordinate descent (BCD) method that are now wildly used to solve large scale convex optimization problems in many fields. For ADMM, it is still lack of theoretical understanding of the algorithm when the objective function is not separable … Read more

The Uncapacitated Single Allocation p-Hub Median Problem with Stepwise Cost Function

In this paper, we address a new version of the Uncapacitated Single Allocation p-Hub Median Problem (USApHMP) in which transportation costs on each edge are given by piecewise constant cost functions. In the classical USApHMP, transportation costs are modelled as linear functions of the transport volume, where a fixed discount factor on hub-hub connections is … Read more

Asymptotic Behaviour of the Quadratic Knapsack Problem

We study subclasses of the quadratic knapsack problem, where the profits are independent random variables defined on the interval [0,1] and the knapsack capacity is proportional to the number of items (we assume that the weights are arbitrary numbers from the interval [0,1]). We show asymptotically that the objective value of a very easy heuristic … Read more

A survey on operator splitting and decomposition of convex programs

Many structured convex minimization problems can be modeled by the search of a zero of the sum of two monotone operators. Operator splitting methods have been designed to decompose and regularize at the same time these kind of models. We review here these models and the classical splitting methods. We focus on the numerical sensitivity … Read more

Semidefinite approximations of the polynomial abscissa

Given a univariate polynomial, its abscissa is the maximum real part of its roots. The abscissa arises naturally when controlling linear differential equations. As a function of the polynomial coefficients, the abscissa is H\”older continuous, and not locally Lipschitz in general, which is a source of numerical difficulties for designing and optimizing control laws. In … Read more

A DERIVATIVE-FREE APPROACH TO CONSTRAINED MULTIOBJECTIVE NONSMOOTH OPTIMIZATION

In this work, we consider multiobjective optimization problems with both bound constraints on the variables and general nonlinear constraints, where objective and constraint function values can only be obtained by querying a black box. We define a linesearch-based solution method, and we show that it converges to a set of Pareto stationary points. To this … Read more

Spectral projected gradient method for stochastic optimization

We consider the Spectral Projected Gradient method for solving constrained optimization problems with the objective function in the form of mathematical expectation. It is assumed that the feasible set is convex, closed and easy to project on. The objective function is approximated by a sequence of Sample Average Approximation functions with different sample sizes. The … Read more