On the convergence of iterative schemes for solving a piecewise linear system of equations

This paper is devoted to studying the global and finite convergence of the semi-smooth Newton method for solving a piecewise linear system that arises in cone-constrained quadratic programming problems and absolute value equations. We first provide a negative answer via a counterexample to a conjecture on the global and finite convergence of the Newton iteration … Read more

Faster Lagrangian-based methods: a unified prediction-correction framework

Motivated by the prediction-correction framework constructed by He and Yuan [SIAM J. Numer. Anal. 50: 700-709, 2012], we propose a unified prediction-correction framework to accelerate Lagrangian-based methods. More precisely, for strongly convex optimization, general linearized Lagrangian method with indefinite proximal term, alternating direction method of multipliers (ADMM) with the step size of Lagrangian multiplier not … Read more

Federated Learning on Riemannian Manifolds

Federated learning (FL) has found many important applications in smart-phone-APP based machine learning applications. Although many algorithms have been studied for FL, to the best of our knowledge, algorithms for FL with nonconvex constraints have not been studied. This paper studies FL over Riemannian manifolds, which finds important applications such as federated PCA and federated … Read more

Decentralized Bilevel Optimization

Bilevel optimization has been successfully applied to many important machine learning problems. Algorithms for solving bilevel optimization have been studied under various settings. In this paper, we study the nonconvex-strongly-convex bilevel optimization under a decentralized setting. We design decentralized algorithms for both deterministic and stochastic bilevel optimization problems. Moreover, we analyze the convergence rates of … Read more

PyEPO: A PyTorch-based End-to-End Predict-then-Optimize Library for Linear and Integer Programming

In deterministic optimization, it is typically assumed that all parameters of the problem are fixed and known. In practice, however, some parameters may be a priori unknown but can be estimated from historical data. A typical predict-then-optimize approach separates predictions and optimization into two stages. Recently, end-to-end predict-then-optimize has become an attractive alternative. In this … Read more

Decision Rule Approaches for Pessimistic Bilevel Linear Programs under Moment Ambiguity with Facility Location Applications

We study a pessimistic stochastic bilevel program in the context of sequential two-player games, where the leader makes a binary here-and-now decision, and the follower responds a continuous wait-and-see decision after observing the leader’s action and revelation of uncertainty. Only the information of the mean, covariance, and support is known. We formulate the problem as … Read more

Mathematical models and decomposition methods for the two-bar charts packing problem

We consider the two-bar charts packing (2-BCPP), a recent combinatorial optimization problem whose aim is to pack a set of one-dimensional items into the minimum number of bins. As opposed to the well-known bin packing problem, pairs of items are grouped to form bar charts, and a solution is only feasible if the first and … Read more

Preconditioned Gradient Descent for Overparameterized Nonconvex Burer–Monteiro Factorization with Global Optimality Certification

We consider using gradient descent to minimize the nonconvex function $f(X)=\phi(XX^{T})$ over an $n\times r$ factor matrix $X$, in which $\phi$ is an underlying smooth convex cost function defined over $n\times n$ matrices. While only a second-order stationary point $X$ can be provably found in reasonable time, if $X$ is additionally \emph{rank deficient}, then its … Read more

Convergence of Trajectory Following Dynamic Programming algorithms for multistage stochastic problems without finite support assumptions

We introduce a class of algorithms, called Trajectory Following Dynamic Programming (TFDP) algorithms, that iteratively refines approximation of cost-to-go functions of multistage stochastic problems with independent random variables. This framework encompasses most variants of the Stochastic Dual Dynamic Programming algorithm. Leveraging a Lipschitz assumption on the expected cost-to-go functions, we provide a new convergence and … Read more