A conic formulation for hBcnorm optimization

In this paper, we formulate the $l_p$-norm optimization problem as a conic optimization problem, derive its standard duality properties and show it can be solved in polynomial time. We first define an ad hoc closed convex cone, study its properties and derive its dual. This allows us to express the standard $l_p$-norm optimization primal problem … Read more

Exploiting Sparsity in Semidefinite Programming via Matrix Completion II: Implementation and Numerical Results

In Part I of this series of articles, we introduced a general framework of exploiting the aggregate sparsity pattern over all data matrices of large scale and sparse semidefinite programs (SDPs) when solving them by primal-dual interior-point methods. This framework is based on some results about positive semidefinite matrix completion, and it can be embodied … Read more

Adaptive Simulated Annealing (ASA)

Adaptive Simulated Annealing (ASA) is a C-language code developed to statistically find the best global fit of a nonlinear constrained non-convex cost-function over a D-dimensional space. Citation %A L. Ingber %R Global optimization C-code %I Caltech Alumni Association %C Pasadena, CA %T Adaptive Simulated Annealing (ASA) %D 1993 %K 200701 %L Ingber:1993:CODE-ASA %O URL http://www.ingber.com/#ASA-CODE … Read more

Realignment in the NFL

The National Football League (NFL) in the United States will expand to 32 teams in 2002 with the addition of a team in Houston. At that point, the league will be realigned into eight divisions, each containing four teams. We describe a branch-and-cut algorithm for minimizing the sum of intradivisional travel distances. We consider first … Read more

Branch-and-cut for the k-way equipartition problem

We investigate the polyhedral structure of a formulation of the k-way equipartition problem and a branch-and-cut algorithm for the problem. The k-way equipartition problem requires dividing the vertices of a weighted graph into k equally sized sets, so as to minimize the total weight of edges that have both endpoints in the same set. Applications … Read more

Linear time approximation scheme for the multiprocessor open shop problem

For the $r$-stage open shop problem with identical parallel machines at each stage and the minimum makespan criterion, an approximation scheme is constructed with running time $O(nrm + C(m,\eps))$ , where $n$ is the number of jobs, $m$ is the total number of machines, and $C(m,\eps)$ is a function independent of $n$. Citation Discrete Appl. … Read more

A Quadratic Programming Bibliography

The following is a list of all of the published and unpublished works on quadratic programming that we are aware of. Some are general references to background material, while others are central to the development of the quadratic programming methods and to the applications we intend to cover in our evolving book on the subject. … Read more

Numerical methods for large-scale non-convex quadratic programming

We consider numerical methods for finding (weak) second-order critical points for large-scale non-convex quadratic programming problems. We describe two new methods. The first is of the active-set variety. Although convergent from any starting point, it is intended primarily for the case where a good estimate of the optimal active set can be predicted. The second … Read more

A 3/2-Approximation algorithm for two-machine flow-shop sequencing subject to release dates

The two-machine flow shop sequencing problem with arbitrary release dates of jobs and the minimum makespan criterion is considered. The problem is known to be NP-hard, and the best known approximation algorithms are those of Potts (1985) with a worst-case performance ratio of 5/3 and running time $O(n^3 \log n)$, and a polynomial time approximation … Read more

On Robust Optimization of Two-Stage Systems

Robust optimization extends stochastic programming models by incorporating measures of variability into the objective function. This paper explores robust optimization in the context of two-stage planning systems. First, we propose the use of a generalized Benders decomposition algorithm for solving robust models. Next, we argue that using an arbitrary measure for variability can lead to … Read more