Distributed Basis Pursuit

We propose a distributed algorithm for solving the optimization problem Basis Pursuit (BP). BP finds the least L1-norm solution of the underdetermined linear system Ax = b and is used, for example, in compressed sensing for reconstruction. Our algorithm solves BP on a distributed platform such as a sensor network, and is designed to minimize … Read more

Fast First-Order Methods for Stable Principal Component Pursuit

The stable principal component pursuit (SPCP) problem is a non-smooth convex optimization problem, the solution of which has been shown both in theory and in practice to enable one to recover the low rank and sparse components of a matrix whose elements have been corrupted by Gaussian noise. In this paper, we first show how … Read more

Structured Sparsity via Alternating Direction Methods

We consider a class of sparse learning problems in high dimensional feature space regularized by a structured sparsity-inducing norm which incorporates prior knowledge of the group structure of the features. Such problems often pose a considerable challenge to optimization algorithms due to the non-smoothness and non-separability of the regularization term. In this paper, we focus … Read more

Group Sparse Optimization by Alternating Direction Method

This paper proposes efficient algorithms for group sparse optimization with mixed L21-regularization, which arises from the reconstruction of group sparse signals in compressive sensing, and the group Lasso problem in statistics and machine learning. It is known that encoding the group information in addition to sparsity will lead to better signal recovery/feature selection. The L21-regularization … Read more

A Parallel Inertial Proximal Optimization Method

The Douglas-Rachford algorithm is a popular iterative method for finding a zero of a sum of two maximal monotone operators defined on a Hilbert space. In this paper, we propose an extension of this algorithm including inertia parameters and develop parallel versions to deal with the case of a sum of an arbitrary number of … Read more

On the acceleration of augmented Lagrangian method for linearly constrained optimization

The classical augmented Lagrangian method (ALM) plays a fundamental role in algorithmic development of constrained optimization. In this paper, we mainly show that Nesterov’s influential acceleration techniques can be applied to accelerate ALM, thus yielding an accelerated ALM whose iteration-complexity is O(1/k^2) for linearly constrained convex programming. As a by-product, we also show easily that … Read more

Iteration-complexity of block-decomposition algorithms and the alternating minimization augmented Lagrangian method

In this paper, we consider the monotone inclusion problem consisting of the sum of a continuous monotone map and a point-to-set maximal monotone operator with a separable two-block structure and introduce a framework of block-decomposition prox-type algorithms for solving it which allows for each one of the single-block proximal subproblems to be solved in an … Read more

A Practical Relative Error Criterion for Augmented Lagrangians

This paper develops a new error criterion for the approximate minimization of augmented Lagrangian subproblems. This criterion is practical in the sense that it requires only information that is ordinarily readily available, such as the gradient (or a subgradient) of the augmented Lagrangian. It is also “relative” in the sense of relative error criteria for … Read more

A splitting method for separate convex programming with linking linear constraints

We consider the separate convex programming problem with linking linear constraints, where the objective function is in the form of the sum of m individual functions without crossed variables. The special case with m=2 has been well studied in the literature and some algorithms are very influential, e.g. the alternating direction method. The research for … Read more

Derivative-free methods for nonlinear programming with general lower-level constraints

Augmented Lagrangian methods for derivative-free continuous optimization with constraints are introduced in this paper. The algorithms inherit the convergence results obtained by Andreani, Birgin, Martínez and Schuverdt for the case in which analytic derivatives exist and are available. In particular, feasible limit points satisfy KKT conditions under the Constant Positive Linear Dependence (CPLD) constraint qualification. … Read more