LMBOPT — a limited memory method for bound-constrained optimization

Recently, Neumaier and Azmi gave a comprehensive convergence theory for a generic algorithm for bound constrained optimization problems with a continuously differentiable objective function. The algorithm combines an active set strategy with a gradient-free line search CLS along a piecewise linear search path defined by directions chosen to reduce zigzagging. This paper describes LMBOPT, an … Read more

Approximate solution of system of equations arising in interior-point methods for bound-constrained optimization

The focus in this paper is interior-point methods for bound-constrained nonlinear optimization where the system of nonlinear equations that arise are solved with Newton’s method. There is a trade-off between solving Newton systems directly, which give high quality solutions, and solving many approximate Newton systems which are computationally less expensive but give lower quality solutions. … Read more

Projected-Search Methods for Bound-Constrained Optimization

Projected-search methods for bound-constrained minimization are based on performing a line search along a continuous piecewise-linear path obtained by projecting a search direction onto the feasible region. A potential benefit of a projected-search method is that many changes to the active set can be made at the cost of computing a single search direction. As … Read more

Bound-constrained polynomial optimization using only elementary calculations

We provide a monotone non increasing sequence of upper bounds $f^H_k$ ($k\ge 1$) converging to the global minimum of a polynomial $f$ on simple sets like the unit hypercube. The novelty with respect to the converging sequence of upper bounds in [J.B. Lasserre, A new look at nonnegativity on closed sets and polynomial optimization, SIAM … Read more

DERIVATIVE-FREE METHODS FOR BOUND CONSTRAINED MIXED-INTEGER OPTIMIZATION

We consider the problem of minimizing a continuously differentiable function of several variables subject to simple bound constraints where some of the variables are restricted to take integer values. We assume that the first order derivatives of the objective function can be neither calculated nor approximated explicitly. This class of mixed integer nonlinear optimization problems … Read more

An Extension of the Conjugate Directions Method With Orthogonalization to Large-Scale Problems With Bound Constraints

In our reports on GAMM-04 and ECCOMAS-04 there has been presented a new conjugate directions method for large scale unconstrained minimization problems. High efficiency of this method is ensured by employing an orthogonalization procedure: when constructing the next conjugate vector the component of the gradient is used that is orthogonal to the subspace of preceding … Read more

Symbolic-interval heuristic for bound-constrained minimization

Bound-constrained global optimization helps answer many practical questions in chemistry, molecular biology, economics. Most of algorithms for solution of global optimization problems are a combination of interval methods and exhuastive search. The efficiency of such algorithms is characterized by their ability to detect and eliminate sub-optimal feasible regions. This ability is increased by availability of … Read more

Convergence Results for Pattern Search Algorithms are Tight

Recently, general definitions of pattern search methods for both unconstrained and linearly constrained optimization were presented. It was shown under mild conditions, that there exists a subsequence of iterates converging to a stationary point. In the unconstrained case, stronger results are derived under additional assumptions. In this paper, we present three small dimensioned examples showing … Read more

Pattern search algorithms for mixed variable programming

Many engineering optimization problems involve a special kind of discrete variable that {\em can} be represented by a number, but this representation has no significance. Such variables arise when a decision involves some situation like a choice from an unordered list of categories. This has two implications: The standard approach of solving problems with continuous … Read more