Interior Point and Semidefinite Approaches in Combinatorial Optimization

Interior-point methods (IPMs), originally conceived in the context of linear programming have found a variety of applications in integer programming, and combinatorial optimization. This survey presents an up to date account of IPMs in solving NP-hard combinatorial optimization problems to optimality, and also in developing approximation algorithms for some of them. The surveyed approaches include … Read more

Parallel Strategies for GRASP with path-relinking

A Greedy Randomized Adaptive Search Procedure (GRASP) is a metaheuristic for combinatorial optimization. It usually consists of a construction procedure based on a greedy randomized algorithm and local search. Path-relinking is an intensification strategy that explores trajectories that connect high quality solutions. We analyze two parallel strategies for GRASP with path-relinking and propose a criterion … Read more

Scheduling Workover Rigs for Onshore Oil Production

Many oil wells in Brazilian onshore fields rely on artificial lift methods. Maintenance services such as cleaning, reinstatement, stimulation and others are essential to these wells. These services are performed by workover rigs, which are avaliable on a limited number with respect to the number of wells demanding service. The decision of which workover rig … Read more

Domination analysis for minimum multiprocessor scheduling

Let $P$ be a combinatorial optimization problem, and let $A$ be an approximation algorithm for $P$. The domination ratio $\domr(A,s)$ is the maximal real $q$ such that the solution $x(I)$ obtained by $A$ for any instance $I$ of $P$ of size $s$ is not worse than at least the fraction $q$ of the feasible solutions … Read more

On Semidefinite Programming Relaxations for the Satisfiability Problem

This paper is concerned with the analysis and comparison of semidefinite programming (SDP) relaxations for the satisfiability (SAT) problem. Our presentation is focussed on the special case of 3-SAT, but the ideas presented can in principle be extended to any instance of SAT specified by a set of boolean variables and a propositional formula in … Read more

Design and analysis of an approximation algorithm for Stackelberg network pricing

We consider the problem of maximizing the revenue raised from tolls set on the arcs of a transportation network, under the constraint that users are assigned to toll-compatible shortest paths. We first prove that this problem is strongly NP-hard. We then provide a polynomial time algorithm with a worst-case precision guarantee of $\frac{1}{2}\log m_T+1$, where … Read more

Semidefinite programming and integer programming

We survey how semidefinite programming can be used for finding good approximative solutions to hard combinatorial optimization problems. CitationPreliminary version appeared as Report PNA-R0210, CWI, Amsterdam, April 2002. To appear as Chapter in the Handbook on Discrete Optimization, K. Aardal, G. Nemhauser, R. Weismantel, eds., Elsevier Publishers.ArticleDownload View PDF

Lagrangian Smoothing Heuristic for Max-Cut

This paper presents smoothing heuristics for an NP-hard combinatorial problem based on Lagrangian relaxation. We formulate the Lagrangian dual for this nonconvex quadratic problem and propose eigenvalue nonsmooth unconstrained optimization to solve the dual problem with bundle or subgradient methods. Derived heuristics are considered to obtain good primal solutions through pathfollowing methods using a projected … Read more

Parallel GRASP with path-relinking for job shop scheduling

In the job shop scheduling problem (JSP), a finite set of jobs is processed on a finite set of machines. Each job is required to complete a set of operations in a fixed order. Each operation is processed on a specific machine for a fixed duration. A machine can process no more than one job … Read more

A Mixed Integer Disjunctive Model for Transmission Network Expansion

The classical non-linear mixed integer formulation of the transmission network expansion problem cannot guarantee finding the optimal solution due to its non-convex nature. We propose an alternative mixed integer linear disjunctive formulation, which has better conditioning properties than the standard disjunctive model. The mixed integer program is solved by a commercial Branch and Bound code, … Read more