Achieving Consistency with Cutting Planes

Cutting planes accelerate branch-and-bound search primarily by cutting off fractional solutions of the linear programming (LP) relaxation, resulting in tighter bounds for pruning the search tree. Yet cutting planes can also reduce backtracking by excluding inconsistent partial assignments that occur in the course of branching. A partial assignment is inconsistent with a constraint set when … Read more

Flexible Job Shop Scheduling Problems with Arbitrary Precedence Graphs

A common assumption in the shop scheduling literature is that the processing order of the operations of each job is sequential; however, in practice there can be multiple connections and finish-to-start dependencies among the operations of each job. This paper studies flexible job shop scheduling problems with arbitrary precedence graphs. Rigorous mixed integer and constraint … Read more

Constraint Programming Approaches for the Discretizable Molecular Distance Geometry Problem

The Distance Geometry Problem (DGP) seeks to find positions for a set of points in geometric space when some distances between pairs of these points are known. The so-called discretization assumptions allow to discretize the search space of DGP instances. In this paper, we focus on a key subclass of DGP, namely the Discretizable Molecular … Read more

Integer Programming, Constraint Programming, and Hybrid Decomposition Approaches to Discretizable Distance Geometry Problems

Given an integer dimension K and a simple, undirected graph G with positive edge weights, the Distance Geometry Problem (DGP) aims to find a realization function mapping each vertex to a coordinate in K-dimensional space such that the distance between pairs of vertex coordinates is equal to the corresponding edge weights in G. The so-called … Read more

A Computational Comparison of Optimization Methods for the Golomb Ruler Problem

The Golomb ruler problem is defined as follows: Given a positive integer n, locate n marks on a ruler such that the distance between any two distinct pair of marks are different from each other and the total length of the ruler is minimized. The Golomb ruler problem has applications in information theory, astronomy and … Read more

Exact Methods for Solving Traveling Salesman Problems with Pickup and Delivery in Real Time

The Traveling Salesman Problem with Pickup and Delivery (TSPPD) describes the problem of finding a minimum cost path in which pickups precede their associated deliveries. The TSPPD is particularly important in the growing field of Dynamic Pickup and Delivery Problems (DPDP). These include the many-to-many Dial-A-Ride Problems (DARP) of companies such as Uber and Lyft, … Read more

Enriching Solutions to Combinatorial Problems via Solution Engineering

Existing approaches to identify multiple solutions to combinatorial problems in practice are at best limited in their ability to simultaneously incorporate both diversity among generated solutions, as well as problem-specific desires that are apriori unknown, or at least difficult to articulate, for the end-user. We propose a general framework that can generate a set of … Read more

The Gamut and Time Arrow of Automated Nurse Rostering

There is an undeniable global shortage of skillful nurses. This is a problem of high priority, which is correlated to workforce management issues. These issues can be palliated by increasing nurses’ satisfaction based on flexible rosters using automated nurse rostering. This paper in concerned with nurse rostering based on constraint programming by satisfying global constraints, … Read more

Constraint Programming for LNG Ship Scheduling and Inventory Management

We propose a constraint programming approach for the optimization of inventory routing in the liquefied natural gas industry. We present two constraint programming models that rely on a disjunctive scheduling representation of the problem. We also propose an iterative search heuristic to generate good feasible solutions for these models. Computational results on a set of … Read more

Global optimization of pipe networks by the interval analysis approach: the Belgium network case

We show that global optimization techniques, based on interval analysis and constraint propagation, succeed in solving the classical problem of optimization of the Belgium gas network. CitationPublished as Inria Research report RR-7796, November 2011.ArticleDownload View PDF