Chambolle-Pock and Tseng’s methods: relationship and extension to the bilevel optimization

In the first part of the paper we focus on two problems: (a) regularized least squares and (b) nonsmooth minimization over an affine subspace. For these problems we establish the connection between the primal-dual method of Chambolle-Pock and Tseng’s proximal gradient method. For problem (a) it allows us to derive a nonergodic $O(1/k^2)$ convergence rate … Read more

Asynchronous Parallel Algorithms for Nonconvex Big-Data Optimization. Part II: Complexity and Numerical Results

We present complexity and numerical results for a new asynchronous parallel algorithmic method for the minimization of the sum of a smooth nonconvex function and a convex nonsmooth regularizer, subject to both convex and nonconvex constraints. The proposed method hinges on successive convex approximation techniques and a novel probabilistic model that captures key elements of … Read more

Convergence rates of moment-sum-of-squares hierarchies for volume approximation of semialgebraic sets

Moment-sum-of-squares hierarchies of semidefinite programs can be used to approximate the volume of a given compact basic semialgebraic set $K$. The idea consists of approximating from above the indicator function of $K$ with a sequence of polynomials of increasing degree $d$, so that the integrals of these polynomials generate a convergence sequence of upper bounds … Read more

Positive-Indefinite Proximal Augmented Lagrangian Method and its Application to Full Jacobian Splitting for Multi-block Separable Convex Minimization Problems

The augmented Lagrangian method (ALM) is fundamental for solving convex programming problems with linear constraints. The proximal version of ALM, which regularizes ALM’s subproblem over the primal variable at each iteration by an additional positive-definite quadratic proximal term, has been well studied in the literature. In this paper, we show that it is not necessary … Read more

A first-order primal-dual algorithm with linesearch

The paper proposes a linesearch for the primal-dual method. Each iteration of the linesearch requires to update only the dual (or primal) variable. For many problems, in particular for regularized least squares, the linesearch does not require any additional matrix-vector multiplications. We prove convergence of the proposed method under the standard assumptions. We also show … Read more

Linearized Alternating Direction Method of Multipliers via Positive-Indefinite Proximal Regularization for Convex Programming

The alternating direction method of multipliers (ADMM) is being widely used for various convex minimization models with separable structures arising in a variety of areas. In the literature, the proximalversion of ADMM which allows ADMM’s subproblems to be proximally regularized has been well studied. Particularly the linearized version of ADMM can be yielded when the … Read more

Faster Alternating Direction Method of Multipliers with a Worst-case O(1/n^2) Convergence Rate

The alternating direction method of multipliers (ADMM) is being widely used for various convex programming models with separable structures arising in specifically many scientific computing areas. The ADMM’s worst-case O(1/n) convergence rate measured by the iteration complexity has been established in the literature when its penalty parameter is a constant, where n is the iteration … Read more

Exact Worst-case Performance of First-order Methods for Composite Convex Optimization

We provide a framework for computing the exact worst-case performance of any algorithm belonging to a broad class of oracle-based first-order methods for composite convex optimization, including those performing explicit, projected, proximal, conditional and inexact (sub)gradient steps. We simultaneously obtain tight worst-case guarantees and explicit instances of optimization problems on which the algorithm reaches this … Read more

Convergence Analysis of ISTA and FISTA for “Strongly + Semi” Convex Programming

The iterative shrinkage/thresholding algorithm (ISTA) and its faster version FISTA have been widely used in the literature. In this paper, we consider general versions of the ISTA and FISTA in the more general “strongly + semi” convex setting, i.e., minimizing the sum of a strongly convex function and a semiconvex function; and conduct convergence analysis … Read more

A unified convergence bound for conjugate gradient and accelerated gradient

Nesterov’s accelerated gradient method for minimizing a smooth strongly convex function $f$ is known to reduce $f(\x_k)-f(\x^*)$ by a factor of $\eps\in(0,1)$ after $k\ge O(\sqrt{L/\ell}\log(1/\eps))$ iterations, where $\ell,L$ are the two parameters of smooth strong convexity. Furthermore, it is known that this is the best possible complexity in the function-gradient oracle model of computation. The … Read more