A nested primal–dual FISTA-like scheme for composite convex optimization problems

We propose a nested primal–dual algorithm with extrapolation on the primal variable suited for minimizing the sum of two convex functions, one of which is continuously differentiable. The proposed algorithm can be interpreted as an inexact inertial forward–backward algorithm equipped with a prefixed number of inner primal–dual iterations for the proximal evaluation and a “warm–start” … Read more

Survey Descent: A Multipoint Generalization of Gradient Descent for Nonsmooth Optimization

For strongly convex objectives that are smooth, the classical theory of gradient descent ensures linear convergence relative to the number of gradient evaluations. An analogous nonsmooth theory is challenging. Even when the objective is smooth at every iterate, the corresponding local models are unstable and the number of cutting planes invoked by traditional remedies is … Read more

A New Insight on Augmented Lagrangian Method with Applications in Machine Learning

By exploiting double-penalty terms for the primal subproblem, we develop a novel relaxed augmented Lagrangian method for solving a family of convex optimization problems subject to equality or inequality constraints. This new method is then extended to solve a general multi-block separable convex optimization problem, and two related primal-dual hybrid gradient algorithms are also discussed. … Read more

Accelerated Stochastic Peaceman-Rachford Method for Empirical Risk Minimization

This work is devoted to studying an Accelerated Stochastic Peaceman-Rachford Splitting Method (AS-PRSM) for solving a family of structural empirical risk minimization problems. The objective function to be optimized is the sum of a possibly nonsmooth convex function and a finite-sum of smooth convex component functions. The smooth subproblem in AS-PRSM is solved by a stochastic gradient method using variance reduction … Read more

A Homogeneous Predictor-Corrector Algorithm for Stochastic Nonsymmetric Convex Conic Optimization With Discrete Support

We consider a stochastic convex optimization problem over nonsymmetric cones with discrete support. This class of optimization problems has not been studied yet. By using a logarithmically homogeneous self-concordant barrier function, we present a homogeneous predictor-corrector interior-point algorithm for solving stochastic nonsymmetric conic optimization problems. We also derive an iteration bound for the proposed algorithm. … Read more

Practical Large-Scale Linear Programming using Primal-Dual Hybrid Gradient

We present PDLP, a practical first-order method for linear programming (LP) that can solve to the high levels of accuracy that are expected in traditional LP applications. In addition, it can scale to very large problems because its core operation is matrix-vector multiplications. PDLP is derived by applying the primal-dual hybrid gradient (PDHG) method, popularized … Read more

Optimal Convergence Rates for the Proximal Bundle Method

We study convergence rates of the classic proximal bundle method for a variety of nonsmooth convex optimization problems. We show that, without any modification, this algorithm adapts to converge faster in the presence of smoothness or a Hölder growth condition. Our analysis reveals that with a constant stepsize, the bundle method is adaptive, yet it … Read more

Universal Conditional Gradient Sliding for Convex Optimization

In this paper, we present a first-order projection-free method, namely, the universal conditional gradient sliding (UCGS) method, for solving ε-approximate solutions to convex differentiable optimization problems. For objective functions with Hölder continuous gradients, we show that UCGS is able to terminate with ε-solutions with at most O((1/ε)^(2/(1+3v))) gradient evaluations and O((1/ε)^(4/(1+3v))) linear objective optimizations, where … Read more

A Framework for Multi-stage Bonus Allocation in Meal-Delivery Platform

Online meal delivery is undergoing explosive growth, as this service is becoming increasingly fashionable. A meal delivery platform aims to provide efficient services for customers and restaurants. However, in reality, several hundred thousand orders are canceled per day in the Meituan meal delivery platform since they are not accepted by the crowdsoucing drivers, which is … Read more

Variants of the A-HPE and large-step A-HPE algorithms for strongly convex problems with applications to accelerated high-order tensor methods

For solving strongly convex optimization problems, we propose and study the global convergence of variants of the A-HPE and large-step A-HPE algorithms of Monteiro and Svaiter. We prove \emph{linear} and the \emph{superlinear} $\mathcal{O}\left(k^{\,-k\left(\frac{p-1}{p+1}\right)}\right)$ global rates for the proposed variants of the A-HPE and large-step A-HPE methods, respectively. The parameter $p\geq 2$ appears in the (high-order) … Read more