Wasserstein Distributionally Robust Kalman Filtering

We study a distributionally robust mean square error estimation problem over a nonconvex Wasserstein ambiguity set containing only normal distributions. We show that the optimal estimator and the least favorable distribution form a Nash equilibrium. Despite the non-convex nature of the ambiguity set, we prove that the estimation problem is equivalent to a tractable convex … Read more

The Distributionally Robust Chance Constrained Vehicle Routing Problem

We study a variant of the capacitated vehicle routing problem (CVRP), which asks for the cost-optimal delivery of a single product to geographically dispersed customers through a fleet of capacity-constrained vehicles. Contrary to the classical CVRP, which assumes that the customer demands are deterministic, we model the demands as a random vector whose distribution is … Read more

Data-Driven Distributionally Robust Chance-Constrained Optimization with Wasserstein Metric

We study distributionally robust chance-constrained programming (DRCCP) optimization problems with data-driven Wasserstein ambiguity sets. The proposed algorithmic and reformulation framework applies to distributionally robust optimization problems subjected to individual as well as joint chance constraints, with random right-hand side and technology vector, and under two types of uncertainties, called uncertain probabilities and continuum of realizations. … Read more

Data-Driven Chance Constrained Programs over Wasserstein Balls

We provide an exact deterministic reformulation for data-driven chance constrained programs over Wasserstein balls. For individual chance constraints as well as joint chance constraints with right-hand side uncertainty, our reformulation amounts to a mixed-integer conic program. In the special case of a Wasserstein ball with the $1$-norm or the $\infty$-norm, the cone is the nonnegative … Read more

The Value of Randomized Solutions in Mixed-Integer Distributionally Robust Optimization Problems

Randomization refers to the process of taking decisions randomly according to the outcome of an independent randomization device such as a dice or a coin flip. The concept is unconventional, and somehow counterintuitive, in the domain of mathematical programming, where deterministic decisions are usually sought even when the problem parameters are uncertain. However, it has … Read more

Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator

We introduce a distributionally robust maximum likelihood estimation model with a Wasserstein ambiguity set to infer the inverse covariance matrix of a p-dimensional Gaussian random vector from n independent samples. The proposed model minimizes the worst case (maximum) of Stein’s loss across all normal reference distributions within a prescribed Wasserstein distance from the normal distribution … Read more

Distributionally robust optimization with polynomial densities: theory, models and algorithms

In distributionally robust optimization the probability distribution of the uncertain problem parameters is itself uncertain, and a fictitious adversary, e.g., nature, chooses the worst distribution from within a known ambiguity set. A common shortcoming of most existing distributionally robust optimization models is that their ambiguity sets contain pathological discrete distribution that give nature too much … Read more

Data-DrivenWater Allocation under Climate Uncertainty: A Distributionally Robust Approach

This paper investigates the application of techniques from distributionally robust optimization (DRO) to water allocation under future uncertainty. Specifically, we look at a rapidly-developing area of Tucson, Arizona. Tucson, like many arid and semi-arid regions around the world, faces considerable uncertainty in its ability to provide water for its citizens in the future. The main … Read more

Bootstrap Robust Prescriptive Analytics

We address the problem of prescribing an optimal decision in a framework where its cost depends on uncertain problem parameters $Y$ that need to be learned from data. Earlier work by Bertsimas and Kallus (2014) transforms classical machine learning methods that merely predict $Y$ from supervised training data $[(x_1, y_1), \dots, (x_n, y_n)]$ into prescriptive … Read more

Regularization via Mass Transportation

The goal of regression and classification methods in supervised learning is to minimize the empirical risk, that is, the expectation of some loss function quantifying the prediction error under the empirical distribution. When facing scarce training data, overfitting is typically mitigated by adding regularization terms to the objective that penalize hypothesis complexity. In this paper … Read more