MIDAS: A Mixed Integer Dynamic Approximation Scheme

Mixed Integer Dynamic Approximation Scheme (MIDAS) is a new sampling-based algorithm for solving finite-horizon stochastic dynamic programs with monotonic Bellman functions. MIDAS approximates these value functions using step functions, leading to stage problems that are mixed integer programs. We provide a general description of MIDAS, and prove its almost-sure convergence to an epsilon-optimal policy when … Read more

A Polyhedral Approach to Online Bipartite Matching

We study the i.i.d. online bipartite matching problem, a dynamic version of the classical model where one side of the bipartition is fixed and known in advance, while nodes from the other side appear one at a time as i.i.d. realizations of a uniform distribution, and must immediately be matched or discarded. We consider various … Read more

A dynamic programming approach for a class of robust optimization problems

Common approaches to solve a robust optimization problem decompose the problem into a master problem (MP) and adversarial separation problems (APs). MP contains the original robust constraints, however written only for finite numbers of scenarios. Additional scenarios are generated on the fly by solving the APs. We consider in this work the budgeted uncertainty polytope … Read more

A Deterministic Fully Polynomial Time Approximation Scheme For Counting Integer Knapsack Solutions Made Easy

Given $n$ elements with nonnegative integer weights $w=(w_1,\ldots,w_n)$, an integer capacity $C$ and positive integer ranges $u=(u_1,\ldots,u_n)$, we consider the counting version of the classic integer knapsack problem: find the number of distinct multisets whose weights add up to at most $C$. We give a deterministic algorithm that estimates the number of solutions to within … Read more

Distributionally robust inventory control when demand is a martingale

Demand forecasting plays an important role in many inventory control problems. To mitigate the potential harms of model misspecification in this context, various forms of distributionally robust optimization have been applied. Although many of these methodologies suffer from the problem of time-inconsistency, the work of Klabjan, Simchi-Levi and Song [85] established a general time-consistent framework … Read more

Nonstationary Direct Policy Search for Risk-Averse Stochastic Optimization

This paper presents an approach to non-stationary policy search for finite-horizon, discrete-time Markovian decision problems with large state spaces, constrained action sets, and a risk-sensitive optimality criterion. The methodology relies on modeling time variant policy parameters by a non-parametric response surface model for an indirect parametrized policy motivated by the Bellman equation. Through the interpolating … Read more

Semi-Infinite Relaxations for the Dynamic Knapsack Problem with Stochastic Item Sizes

We consider a version of the knapsack problem in which an item size is random and revealed only when the decision maker attempts to insert it. After every successful insertion the decision maker can choose the next item dynamically based on the remaining capacity and available items, while an unsuccessful insertion terminates the process. We … Read more

Two approaches to constrained stochastic optimal control problems

In this article, we study and compare two approaches to solving stochastic optimal control problems with an expectation constraint on the final state. The case of a probability constraint is included in this framework. The first approach is based on a dynamic programming principle and the second one uses Lagrange relaxation. These approaches can be … Read more

Parameter-free Sampled Fictitious Play for Solving Deterministic Dynamic Programming Problems

To facilitate fast solution of deterministic dynamic programming problems, we present a parameter-free variation of the Sampled Fictitious Play (SFP) algorithm. Its random tie-braking procedure imparts a natural randomness to the algorithm which prevents it from “getting stuck” at a local optimal solution and allows the discovery of an optimal path in a finite number … Read more

Simplex Algorithm for Countable-state Discounted Markov Decision Processes

We consider discounted Markov Decision Processes (MDPs) with countably-infinite state spaces, finite action spaces, and unbounded rewards. Typical examples of such MDPs are inventory management and queueing control problems in which there is no specific limit on the size of inventory or queue. Existing solution methods obtain a sequence of policies that converges to optimality … Read more