On the p-median polytope of a special class of graphs

In this paper we consider a well known class of valid inequalities for the p-median and the uncapacitated facility location polytopes, the odd cycle inequalities. It is known that their separation problem is polynomially solvable. We give a new polynomial separation algorithm based on a reduction from the original graph. Then, we define a nontrivial … Read more

Alternative Formulation for the p-median Problem

Given a set of clients and a set of potential sites for facilities, several location problems consist of opening a set of sites and assigning each client to the closest open facility to it. It can be viewed as a variation of the uncapacitated facility location problem. We propose a new formulation of this problem … Read more

A hybrid multistart heuristic for the uncapacitated facility location problem

We present a multistart heuristic for the uncapacitated facility location problem, based on a very successful method we originally developed for the P-median problem. We show extensive empirical evidence to the effectiveness of our algorithm in practice. For most benchmarks instances in the literature, we obtain solutions that are either optimal or a fraction of … Read more

Reliability Models for Facility Location: The Expected Failure Cost Case

Classical facility location models like the P-median problem (PMP) and the uncapacitated fixed-charge location problem (UFLP) implicitly assume that once constructed, the facilities chosen will always operate as planned. In reality, however, facilities “fail” from time to time due to poor weather, labor actions, changes of ownership, or other factors. Such failures may lead to … Read more

Capacitated Facility Location Model with Risk Pooling

The Facility Location Model with Risk Pooling (LMRP) extends the uncapacitated fixed charge model to incorporate inventory decisions at the distribution centers (DCs). In this paper, we introduce a capacitated version of the LMRP that handles inventory management at the DCs such that the capacity limitations at the DCs are not exceeded. We consider a … Read more

An Efficient Exact Algorithm for the Vertex hBcCenter Problem and Computational Experiments for Different Set Covering Subproblems

We develop a simple and yet very efficient exact algorithm for the problem of locating $p$ facilities and assigning clients to them in order to minimize the maximum distance between a client and the facility to which it is assigned. The algorithm iteratively sets a maximum distance value within which it tries to assign all … Read more

Facets of a polyhedron closely related to the integer knapsack-cover problem

We investigate the polyhedral structure of an integer program with a single functional constraint: the integer capacity-cover polyhedron. Such constraints arise in telecommunications planning and facility location applications, and feature the use of general integer (rather than just binary) variables. We derive a large class of facet-defining inequalities by using an augmenting technique that builds … Read more

New formulation and resolution method for the p-Center problem

The $p$-Center problem consists in locating $p$ facilities among a set of $M$ possible locations and assigning $N$ clients to them in order to minimize the maximum distance between a client and the facility to which he is allocated. We present a new integer linear programming formulation for this Min-Max problem with a polynomial number … Read more

An Efficient Exact Algorithm for the Vertex p-Center Problem

Inspired by an algorithm due to Minieka, we develop a simple and yet very efficient exact algorithm for the problem of locating p facilities and assigning clients to them in order to minimize the maximum distance between a client and the facility it is assigned to. After a lower bounding phase, the algorithm iteratively sets … Read more

Near-optimal solutions to large scale facility location problems

We investigate the solution of large scale instances of the capacitated and uncapacitated facility location problems. Let n be the number of customers and m the number of potential facility sites. For the uncapacitated case we solved instances of size m x n=3000 x 3000; for the capacitated case the largest instances were 1000 x … Read more