An analytical lower bound for a class of minimizing quadratic integer optimization problems

Lower bounds on minimization problems are essential for convergence of both branching-based and iterative solution methods for optimization problems. They are also required for evaluating the quality of feasible solutions by providing conservative optimality gaps. We provide an analytical lower bound for a class of quadratic optimization problems with binary decision variables. In contrast to … Read more

Social Classroom Seating Assignment Problems

University students benefit academically, personally and professionally from an expansion of their in-class social network. To facilitate this, we present a novel and broadly applicable optimization approach that exposes individuals to as many as possible peers that they do not know. This novel class of ‘social seating assignment problems’ is parameterized by the social network, … Read more

The Balanced Facility Location Problem: Complexity and Heuristics

In a recent work, Schmitt and Singh propose a new quadratic facility location model to address ecological challenges faced by policymakers in Bavaria, Germany. Building on this previous work, we significantly extend our understanding of this new problem. We develop connections to traditional combinatorial optimization models and show the problem is NP-hard. We then develop … Read more

Exploiting user-supplied Decompositions inside Heuristics

Numerous industrial fields, like supply chain management, face mixed-integer optimization problems on a regular basis. Such problems typically show a sparse structure and vary in size, as well as complexity. However, in order to satisfy customer demands, it is crucial to find good solutions to all such problems quickly. Current research often focuses on the … Read more

Γ-robust Optimization of Project Scheduling Problems

In this paper, we investigate the problem of finding a robust baseline schedule for the project scheduling problem under uncertain process times. We assume that the probability distribution for the duration is unknown but an estimation together with an interval in which this time can vary is given. At most $ \Gamma $ of the … Read more

Insertion Heuristics for a Class of Dynamic Vehicle Routing Problems

We consider a simple family of dynamic vehicle routing problems, in which we have a fixed fleet of identical vehicles, and customer requests arrive during the route-planning process. For this kind of problem, it is natural to use an insertion heuristic. We test several such heuristics computationally, on two different variants of the problem. It … Read more

Worst-Case Analysis of Heuristic Approaches for the Temporal Bin Packing Problem with Fire-Ups

We consider the temporal bin packing problem with fire-ups (TBPP-FU), a branch of operations research recently introduced in multi-objective cloud computing. In this scenario, any item is equipped with a resource demand and a lifespan meaning that it requires the bin capacity only during that time interval. We then aim at finding a schedule minimizing … Read more

Solution Strategies for Integrated Distribution, Production, and Routing Problems Arising in Modular Manufacturing

Recently, there has been a paradigm shift by certain energy and chemical companies towards modular manufacturing, whereby transportable modular production units can be relocated between production facilities to meet the spatial and temporal changes in the availabilities, demands, and prices of the underlying commodities. We refer to the optimal distribution, production, and storage of commodities, … Read more

Decomposition strategies for vehicle routing heuristics

Decomposition techniques are an important component of modern heuristics for large instances of vehicle routing problems. The current literature lacks a characterisation of decomposition strategies and a systematic investigation of their impact when integrated into state-of-the-art heuristics. This paper fills this gap: we discuss the main characteristics of decomposition techniques in vehicle routing heuristics, highlight … Read more

Minimizing delays of patient transports with incomplete information: A modeling approach based on the Vehicle Routing Problem

We investigate a challenging task in ambulatory care, the minimizing of delays of patient transports. In practice, a limited number of vehicles is available for non-rescue transports. Furthermore, the dispatcher rarely has access to complete information when establishing a transport plan for dispatching the vehicles. If additional transport is requested on demand then schedules need … Read more