Solving IP via Complex Integration on Shortest Paths

Using the weighted geometric series expansion, it is shown how integer programming can be solved by evaluating complex path integrals based on a multi-path version of Cauchy’s integral formula. In contrast to existing generating function approaches, the algorithm relies only on complex quadrature and no algebraic techniques are needed. In view of fast implementations of … Read more

The use of multi-criteria decision-making methods in project portfolio selection: a literature review and future research directions

In most project portfolio selection (PPS) situations, the presence of multiple attributes and decision-maker preference is inevitable. As Multi-criteria Decision Analysis (MCDA) methods provide a framework well-suited to deal with these challenges in PPS problems, the use of MCDA methods in real-life PPS problems has increased in recent years. This paper provides a comprehensive literature … Read more

On the Complexity of Branching Proofs

We consider the task of proving integer infeasibility of a bounded convex set K in R^n using a general branching proof system. In a general branching proof, one constructs a branching tree by adding an integer disjunction at each node, such that the leaves of the tree correspond to empty sets (i.e., K together with … Read more

Personnel scheduling during Covid-19 pandemic

This paper addresses a real-life personnel scheduling problem in the context of Covid-19 pandemic, arising in a large Italian pharmaceutical distribution warehouse. In this case study, the challenge is to determine a schedule that attempts to meet the contractual working time of the employees, considering the fact that they must be divided into mutually exclusive … Read more

A Unified Framework for Multistage and Multilevel Mixed Integer Linear Optimization

We introduce a unified framework for the study of multilevel mixed integer linear optimization problems and multistage stochastic mixed integer linear optimization problems with recourse. The framework highlights the common mathematical structure of the two problems and allows for the development of a common algorithmic framework. Focusing on the two-stage case, we investigate, in particular, … Read more

A Framework for Generalized Benders’ Decomposition and Its Application to Multilevel Optimization

We describe an algorithmic framework generalizing the well-known framework originally introduced by Benders. We apply this framework to several classes of optimization problems that fall under the broad umbrella of multilevel/multistage mixed integer linear optimization problems. The development of the abstract framework and its application to this broad class of problems provides new insights and … Read more

Achieving Consistency with Cutting Planes

Cutting planes accelerate branch-and-bound search primarily by cutting off fractional solutions of the linear programming (LP) relaxation, resulting in tighter bounds for pruning the search tree. Yet cutting planes can also reduce backtracking by excluding inconsistent partial assignments that occur in the course of branching. A partial assignment is inconsistent with a constraint set when … Read more

Robust Optimization with Decision-Dependent Information Discovery

Robust optimization (RO) is a popular paradigm for modeling and solving two- and multi-stage decision-making problems affected by uncertainty. In many real-world applications, such as R&D project selection, production planning, or preference elicitation for product or policy recommendations, the time of information discovery is decision-dependent and the uncertain parameters only become observable after an often costly … Read more

Integer Programming, Constraint Programming, and Hybrid Decomposition Approaches to Discretizable Distance Geometry Problems

Given an integer dimension K and a simple, undirected graph G with positive edge weights, the Distance Geometry Problem (DGP) aims to find a realization function mapping each vertex to a coordinate in K-dimensional space such that the distance between pairs of vertex coordinates is equal to the corresponding edge weights in G. The so-called … Read more

An exact algorithm for robust influence maximization

We propose a Branch-and-Cut algorithm for the robust influence maximization problem. The influence maximization problem aims to identify, in a social network, a set of given cardinality comprising actors that are able to influence the maximum number of other actors. We assume that the social network is given in the form of a graph with … Read more