A Linear Programming Based Approach to the Steiner Tree Problem with a Fixed Number of Terminals

We present a set of integer programs (IPs) for the Steiner tree problem with the property that the best solution obtained by solving all, provides an optimal Steiner tree. Each IP is polynomial in the size of the underlying graph and our main result is that the linear programming (LP) relaxation of each IP is … Read more

Strong IP Formulations Need Large Coefficients

The development of practically well-behaving integer programming formulations is an important aspect of solving linear optimization problems over a set $X \subseteq \{0,1\}^n$. In practice, one is often interested in strong integer formulations with additional properties, e.g., bounded coefficients to avoid numerical instabilities. This article presents a lower bound on the size of coefficients in … Read more

Inexact cutting planes for two-stage mixed-integer stochastic programs

We propose a novel way of applying cutting plane techniques to two-stage mixed-integer stochastic programs. Instead of using cutting planes that are always valid, our idea is to apply inexact cutting planes to the second-stage feasible regions that may cut away feasible integer second-stage solutions for some scenarios and may be overly conservative for others. … Read more

On Some Polytopes Contained in the 0,1 Hypercube that Have a Small Chvatal Rank

In this paper, we consider polytopes P that are contained in the unit hypercube. We provide conditions on the set of 0,1 vectors not contained in P that guarantee that P has a small Chvatal rank. Our conditions are in terms of the subgraph induced by these infeasible 0,1 vertices in the skeleton graph of … Read more

On the Rational Polytopes with Chvatal Rank 1

We study the following problem: given a rational polytope with Chvatal rank 1, does it contain an integer point? Boyd and Pulleyblank observed that this problem is in the complexity class NP ∩ co-NP, an indication that it is probably not NP-complete. It is open whether there is a polynomial time algorithm to solve the … Read more

On the NP-hardness of deciding emptiness of the split closure of a rational polytope in the 0,1 hypercube

Split cuts are prominent general-purpose cutting planes in integer programming. The split closure of a rational polyhedron is what is obtained after intersecting the half-spaces defined by all the split cuts for the polyhedron. In this paper, we prove that deciding whether the split closure of a rational polytope is empty is NP-hard, even when … Read more

Provably High-Quality Solutions for the Meal Delivery Routing Problem

Online restaurant aggregators with integrated meal delivery networks have become more common and more popular in the past few years. Meal delivery is arguably the ultimate challenge in last mile logistics: a typical order is expected to be delivered within an hour (much less if possible), and within minutes of the food becoming ready. We … Read more

Layered graph approaches for combinatorial optimization problems

Extending the concept of time-space networks, layered graphs associate information about one or multiple resource state values with nodes and arcs. While integer programming formulations based on them allow to model complex problems comparably easy, their large size makes them hard to solve for non-trivial instances. We detail and classify layered graph modeling techniques that … Read more

Can cut generating functions be good and efficient?

Making cut generating functions (CGFs) computationally viable is a central question in modern integer programming research. One would like to nd CGFs that are simultaneously good, i.e., there are good guarantees for the cutting planes they generate, and ecient, meaning that the values of the CGFs can be computed cheaply (with procedures that have some … Read more

Optimal Decision Trees for Categorical Data via Integer Programming

Decision trees have been a very popular class of predictive models for decades due to their interpretability and good performance on categorical features. However, they are not always robust and tend to overfit the data. Additionally, if allowed to grow large, they lose interpretability. In this paper, we present a novel mixed integer programming formulation … Read more