The stable set problem and the lift-and-project ranks of graphs

We study the lift-and-project procedures for solving combinatorial optimization problems, as described by Lov\’asz and Schrijver, in the context of the stable set problem on graphs. We investigate how the procedures’ performances change as we apply fundamental graph operations. We show that the odd subdivision of an edge and the subdivision of a star operations … Read more

Transparent optical network design with sparse wavelength conversion

We consider the design of transparent optical networks from a practical perspective. Network operators aim at satisfying the communication demands at minimum cost. Such an optimization involves three interdependent planning issues: the dimensioning of the physical topology, the routing of lightpaths, and the wavelength assignment. Further topics include the reliability of the configuration and sparse … Read more

A Branch-and-Price Algorithm and New Test Problems for Spectrum Auctions

When combinatorial bidding is permitted in Spectrum Auctions, such as the upcoming FCC auction #31, the resulting winner-determination problem can be computationally challenging. We present a branch-and-price algorithm based on a set-packing formulation originally proposed by Dietrich and Forrest (2002). This formulation has a variable for every possible combination of winning bids for each bidder. … Read more

Mesh Topology Design in Overlay Virtual Private Networks

We study the mesh topology design problem in overlay virtual private networks. Given a set of customer nodes and associated traffic matrix, tunnels that are connecting node pairs through a public service provider network subject to degree constraints are determined so as to minimize total multihopped traffic. Valid inequalities strengthening the LP relaxation and a … Read more

Pivot, Cut, and Dive: A Heuristic for 0-1 Mixed Integer Programming

We present a heuristic method for general 0-1 mixed integer programming, intended for eventual incorporation into parallel branch-and-bound methods for solving such problems exactly. The core of the heuristic is a rounding method based on simplex pivots, employing only gradient information, for a strictly concave, differentiable merit function measuring integer feasibility. When local minima of … Read more

An Efficient Exact Algorithm for the Vertex p-Center Problem

Inspired by an algorithm due to Minieka, we develop a simple and yet very efficient exact algorithm for the problem of locating p facilities and assigning clients to them in order to minimize the maximum distance between a client and the facility it is assigned to. After a lower bounding phase, the algorithm iteratively sets … Read more

Re-Optimization of Signaling Transfer Points

In this paper we describe the results of a computational study towards the (re)optimization of signaling transfer points (STPs) in telecommunication networks. The best performance of an STP is achieved whenever the traffic load is evenly distributed among the internal components. Due to the continuously changing traffic pattern, the load of the components has to … Read more

A Family of Inequalities for the Generalized Assignment Polytope

We present a family of inequalities that are valid for the generalized assignment polytope. Although the inequalities are not facet-defining in general, they define facets of a polytope of a relaxation. We report computational results on the use of the inequalities in a branch-and-cut scheme that demonstrate their effectiveness. CitationDepartment of Industrial Engineering, State University … Read more

Optimization on Computational Grids

We define the concept of a computational grid, and describe recent work in solving large and complex optimization problems on this type of platform; in particular, integer programming, the quadratic assignment problem, and stochastic programming problems. This article focuses on work conducted in the metaneos project. CitationPreprint, Mathematics and Computer Science Division, Argonne National Laboratory. … Read more

OR Counterparts to AI Planning

The term Planning is not used in Operations Research in the sense that is most common in Artificial Intelligence. AI Planning does have many features in common with OR scheduling, sequencing, routing, and assignment problems, however. Current approaches to solving such problems can be broadly classified into four areas: Combinatorial Optimization, Integer Programming, Constraint Programming, … Read more